C O M M U N I C A T I O N S
Table 2. Synthesis of 4 from 3 (Ar1 ) Ph, R ) Et) with Ar3-Ia
Acknowledgment. This work was supported by Grants-in-Aid
for COE Research on Elements Science, No. 12CE2005, and
Creative Scientific Research, No. 16GS0209, from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan. We
thank Dr. Kenji Yoza, Bruker AXS Japan, for his assistance of
X-ray crystallographic analysis.
entry
3
Ar3
4b
yield (%)c
1
2
3
4
5
6
3a
3b
3f
3f
3g
3h
p-Me2N(CH2)2O-C6H4
p-MeO-C6H4
p-CF3-C6H4
p-Me-C6H4
C6H5
4a
4b
4c
4d
4e
4f
59
75
78
89
75
89
C6H5
Supporting Information Available: Experimental procedures and
analytical and spectroscopic data of new compounds (PDF). This
a Reaction conditions: 1 (0.1 mmol), Ar3-I (0.1 mmol), Pd[P(t-Bu)3]2
(5.0 µmol), 3 M NaOH aq. (0.1 mmol), THF (1 mL), 60 °C. b Obtained as
a single diastereomer. c Isolated yield.
References
Scheme 2. One-Pot Synthesis of (Z)-Tamoxifena
(1) (a) Magarian, R. A.; Overacre, L. B.; Singh, S.; Meyer, K. L. Curr. Med.
Chem. 1994, 1, 61. (b) Wiseman, H. Tamoxifen: Molecular Basis of Use
in Cancer Treatment and PreVention; Wiley: Chichester, U.K., 1994. (c)
Jordan, V. C. J. Med. Chem. 2003, 46, 883. (d) Jordan, V. C. J. Med.
Chem. 2003, 46, 1081.
(2) Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1985, 50, 2121. (b)
Studemann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 93.
(c) Zhou, C.; Emrich, D. E.; Larock, R. C. Org. Lett. 2003, 5, 1579. (d)
Tessier, P. E.; Penwell, A. J.; Souza, F. E. S.; Fallis, A. G. Org. Lett.
2003, 5, 2989. (e) Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
(f) Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
(3) Review on preparation and reactions of 1,1-dimetalated 1-alkenes: (a)
Marek, I. Chem. ReV. 2000, 100, 2887. See also review on recent chemistry
on bisborylated compounds: (b) Dembitsky, V. M.; Ali, H. A.; Srebnik,
M. Appl. Organomet. Chem. 2003, 17, 327.
a Reagents and conditions: (a) 2a (1.0 equiv), Ph-I (1.0 equiv), Pd2dba3
(5 mol %), P(t-Bu)3 (20 mol %), 3 M KOH aqueous solution, dioxane, rt,
2 h; (b) Me2N(CH2)2O-C6H4-I (1.0 equiv), 100 °C, 22 h.
Scheme 3. Cross-Coupling Reaction of 2a with Alkenyl Halides
Leading to Polysubstituted 1,3-Dienes and [3]Dendralenea
(4) Sequential cross-coupling of 1,1-dihalo-1-alkenes is well-documented as
an efficient synthesis of trisubstituted alkenes. (a) Sugihara, T. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi,
E.-i., Ed.; John Wiley & Sons: New York, 2002; Vol. 1, p 649. (b) Minato,
A.; Suzuki, K.; Tamao, K. J. Am. Chem. Soc. 1987, 109, 1257. (c) Roush,
W. R.; Brown, B. B.; Drozda, S. E. Tetrahedron Lett. 1988, 29, 3541. (d)
Zeng, X.; Qian, M.; Hu, Q.; Negishi, E.-i. Angew. Chem., Int. Ed. 2004,
43, 2259.
(5) Itami and Yoshida reported Cu-catalyzed carbomagnezation of alkynyl-
(2-pyridyl)silane generated stereodefined 1-magnesio-1-silyl-1-alkenes,
which underwent Pd-catalyzed cross-coupling reactions, at first, as a
Grignard reagent and then, after transmetalation of silicon to boron, as a
boron reagent, giving rise to diverse tamoxifen-type alkenes stereoselec-
tively. (a) Itami, K.; Kamei, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2003,
125, 14670. (b) Kamei, T.; Itami, K.; Yoshida, J.-i. AdV. Synth. Catal.
2004, 346, 1824.
(6) Zn: (a) Creton, I.; Marek, I.; Normant, J. F. Synthesis 1996, 1499. (b)
Negishi, E.-i.; Sawada, H.; Tour, J. M.; Wei, Y. J. Org. Chem. 1988, 53,
913. Sn: (c) Quayle, P.; Wang, J.; Xu, J.; Urch, C. J. Tetrahedron Lett.
1998, 39, 485. See also: (d) Duboudin, J. G.; Jousseaume, B. J.
Organomet. Chem. 1979, 168, 1. (e) Creton, I.; Marek, I.; Normant, J. F.
Tetrahedron Lett. 1999, 40, 1899.
(7) Palladium-catalyzed cross-coupling reaction of 1-aryl-1,2-diboryl-1-alkenes
with aryl iodides was reported to produce triarylalkenes as a mixture of
regioisomers. (a) Brown, S. D.; Armstrong, R. W. J. Am. Chem. Soc.
1996, 118, 6331. (b) Brown, S. D.; Armstrong, R. W. J. Org. Chem. 1997,
62, 7076.
(8) (a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama,
T. Angew. Chem., Int. Ed. 2001, 40, 790. (b) Kurahashi, T.; Hata, T.;
Masai, H.; Kitagawa, H.; Shimizu, M.; Hiyama, T. Tetrahedron 2002,
58, 6381.
a Reagents and conditions: (a) (E)-PhHCdC(H)I, Pd(PPh3)4 (5 mol %),
3 M KOH aq., THF, rt, 73% yield (2E4E:2E4Z ) 98:2); (b) (Z)-
PhHCdC(H)Br, Pd(PPh3)4 (5 mol %), 3 M KOH aq., THF, 40 °C, 72%
yield (2Z4E:2Z4Z ) 96:4); (c) (E)-HexHCdC(H)I, PdCl2(dppf) (5 mol %),
3 M KOH aq., DME, 40 °C, 81% yield; (d) Ph-I, PdCl2(dppf) (5 mol %),
3 M KOH aq., THF, 60 °C, 81% yield.
and (E)-tamoxifen (4a and 4e) were synthesized, respectively, as
listed in entries 1 and 5.
Moreover, the whole transformation can be carried out sequen-
tially in one pot. A facile synthesis of (Z)-tamoxifen (4a) from 2a
is demonstrated in Scheme 2.
Furthermore, the present stereocontrol in the coupling reaction
of 2 was extended to the reactions with alkenyl iodides and
bromides, giving rise to 3-borylated 1,3-dienes 5 and 6 in good
yields with high E-selectivity (Scheme 3).14 Boronates 5 and 6 can
serve as versatile precursors of polysubstituted 1,3-dienes. For
example, stereocontrolled [3]dendralene 715 and triphenylated 1,3-
diene 8 were easily obtained in good yields by successive
Pd-catalyzed coupling reactions with alkenyl and aryl iodides,
respectively.
(9) (a) Matteson, D. S.; Tripathy, P. B. J. Organomet. Chem. 1970, 21, P6.
(b) Matteson, D. S.; Tripathy, P. B. J. Organomet. Chem. 1974, 69, 53.
(10) See Supporting Information.
(11) Stereochemistries of 3j, 3k, 3n, 3o, and 3r were also determined by X-ray
analysis. See Supporting Information. E-Configuration of 3s was assigned
by comparison of the spectral data with those of (Z)-3s. Liu, X.; Shimizu,
M.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 43, 879.
(12) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (b) Miyaura, N.
Cross-Coupling Reaction: A Practical Guide; Springer-Verlag: Berlin,
2002; Vol. 219, p 11. (c) Miyaura, N. J. Organomet. Chem. 2002, 653,
54. A reviewer suggested the possibility of an equilibration of 3. In view
that (Z)-3 reportedly reacts with aryl iodides under similar conditions
without their isomerization to (E)-3 (ref 5), we consider such equilibration
may be excluded.
(13) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic
Compounds; John Wiley and Sons: New York, 1994; p 695.
(14) Stereochemistry of 5 and 6 was determined by NOE experiments.
In summary, we have demonstrated stereoselective cross-coupling
reaction of 1,1-diboryl-1-alkenes with aryl iodides to afford the
corresponding (E)-alkenylboronates as single diastereomers. In
conjunction with the subsequent coupling of the boronates, this
approach provides an efficient and completely stereocontrolled
access to TAA, including tamoxifen. In addition, this method is
applicable to stereoselective preparation of polysubstituted 1,3-
dienes. Further studies are in progress to disclose the factors for
the stereoselection and to expand this approach to a general
stereocontrolled synthesis of π-conjugated molecules.
(15) Shimizu, M.; Tanaka, K.; Kurahashi, T.; Shimono, K.; Hiyama, T. Chem.
Lett. 2004, 33, 1066.
JA054484G
9
J. AM. CHEM. SOC. VOL. 127, NO. 36, 2005 12507