C O M M U N I C A T I O N S
Table 2. Ruthenium-Catalyzed Hydrative Cyclization of
formation suggest the latter pathway to be the more likely
mechanism.13
1,5-Enynesa
In summary, we have developed a new ruthenium-catalyzed
method for the tandem formations of C-O and C-C bonds via
1,1-difunctionalization of alkynes. This reaction achieves an um-
polung cyclization in which a terminal alkyne is hydrated and
undergoes an intramolecular Michael addition. While mirroring the
Stetter reaction,14 the new process proceeds through an acyl
ruthenium species catalytically generated from hydration of a
vinylidene complex. Efforts are currently directed at further
expanding the scope of the transformation.
Acknowledgment. We thank Princeton University for support
of this research, and Dr. Istva´n Pelczer at the Princeton University
NMR facility for helpful discussion.
Supporting Information Available: Experimental details and
spectral data for all new compounds. This material is available free of
References
(1) (a) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH:
Weinheim, Germany, 1995. (b) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. ReV. 2004, 104, 3079. (c) Beller, M.; Seayad, J.; Tillack, A.; Jiao,
H. Angew. Chem., Int. Ed. 2004, 43, 3368.
(2) For reviews on metal vinylidenes, see: (a) Bruce, M. I. Chem. ReV. 1991,
91, 197. (b) Bruce, M. I.; Swincer, A. G. AdV. Organomet. Chem. 1983,
22, 59. For reviews on the catalysis of metal vinylidenes, see: (c) Bruneau,
C. Top. Organomet. Chem. 2004, 11, 125. (d) Trost, B. M. Acc. Chem.
Res. 2002, 35, 695. (e) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999,
32, 311.
(3) For rare examples of 1,1-difunctionalization mediated by vinylidene
complexes, see: (a) McDonald, F. E.; Schultz, C. C.; Chatterjee, A. K.
Organometallics 1995, 14, 3628. (b) McDonald, F. E.; Bowman, J. L.
Tetrahedron Lett. 1996, 37, 4675.
(4) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706.
(5) Doucet, H.; Martinvaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem.
1995, 60, 7247.
(6) (a) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37, 2867.
(b) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735. (c)
Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.;
Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917. (d) Grotjahn, D. B.;
Incarvito, C. D.; Rheingold, A. L. Angew. Chem., Int. Ed. 2001, 40, 3884.
(e) Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232. (f)
Alvarez, P.; Bassetti, M.; Gimeno, J.; Mancini, G. Tetrahedron Lett. 2001,
42, 8467.
(7) For recent examples of Ru-catalyzed hydrative cyclization of diynes,
see: (a) Odedra, A.; Wu, C. J.; Pratap, T. B.; Huang, C. W.; Ran, Y. F.;
Liu, R. S. J. Am. Chem. Soc. 2005, 127, 3406. (b) Trost, B. M.; Rudd, M.
T. J. Am. Chem. Soc. 2005, 127, 4763.
a All reactions were performed with 0.2 mmol of substrate, 10 mmol of
H2O, and 2 mol % of 11 in 1.0 mL of 1,4-dioxane at 120 °C for 12 h.
b Isolated yields. c A single diastereomer was obtained as the product. d E:
Z ) 5:1. e E:Z ) 1:1. f E:Z ) 1:2.
Scheme 3 Proposed Catalytic Cycle for Hydrative Cyclization
(8) Acyl ruthenium D can undergo decarbonylation followed by a â-hydrogen
or reductive elimination to give 8 or 9 with concomitant generation of a
ruthenium hydride that can reduce 1 to 7. For related examples, see: (a)
Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F.
J. Am. Chem. Soc. 1996, 118, 4585. (b) Datta, S.; Chang, C. L.; Yeh, K.
L.; Liu, R. S. J. Am. Chem. Soc. 2003, 125, 9294. (c) d’Alessandro, N.;
Di Deo, M.; Bonetti, M.; Tonucci, L.; Morvillo, A.; Bressan, M. Eur. J.
Inorg. Chem. 2004, 810. (d) ref 6c.
(9) See Supporting Information for details of the X-ray single-crystal analysis.
(10) (a) McDonald, F. E.; Gleason, M. M. J. Am. Chem. Soc. 1996, 118, 6648.
(b) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482. (c)
Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680.
(11) (a) Bosnich, B. Acc. Chem. Res. 1998, 31, 667. (b) Jun, C. H.; Hong, J.
B.; Lee, D. Y. Synlett 1999, 1. (c) Tanaka, K. J. Synth. Org. Chem. Jpn.
2005, 63, 351. For a Ru-catalyzed hydroacylation, see: (d) Kondo, T.;
Tsuji, Y.; Watanabe, Y. Tetrahedron Lett. 1987, 28, 6229.
(12) For examples of Michael additions using stoichiometric acylmetals, see:
(a) Yamashita, M.; Tashika, H.; Suemitsu, R. Chem. Lett. 1989, 691. (b)
Seyferth, D.; Hui, R. C. J. Am. Chem. Soc. 1985, 107, 4551. (c) Cooke,
M. P.; Parlman, R. M. J. Am. Chem. Soc. 1977, 99, 5222.
(13) A mechanism, whereby a Ru alkylidene rather than an acyl Ru is formed
and undergoes a cycloaddition with the alkene followed by â-hydride and
reductive eliminations to give the product, cannot be excluded. For an
example of a Ru R-hydroxyalkylidene, see: (a) Esteruelas, M. A.; Go´mez,
A. V.; Lahoz, F. J.; Lo´pez, A. M.; On˜ate, E.; Oro, L. A. Organometallics
1996, 15, 3423. For a mechanistically related example, see: (b) Kim, H.;
Lee, C. J. Am. Chem. Soc. 2005, 127, 10180.
aldehydes, nitriles, and esters participated well in the reaction to
give the cyclopentanone derivatives as the product. In most cases,
the combined yield of the uncyclized products analogous to
compounds 6-9 was less than 5%. Notably, 34 was converted to
35 (entry 12) presumably through a â-elimination after cyclization,
despite the presence of the internal hydroxyl group which could
form a dihydrofuran.10
The mechanism of the hydrative cyclization is proposed in
Scheme 3, in which the catalytic cycle involves the formation of a
ruthenium vinylidene, an anti-Markovnikov addition of water, and
cyclization of an acylmetal species onto the alkene. Although the
cyclization may occur through a hydroacylation11 or Michael
addition (paths A and B),12 the requirement of an electron-
withdrawing substituent on the alkene and the lack of aldehyde
(14) (a) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407. (b) Johnson, J.
S. Angew. Chem., Int. Ed. 2004, 43, 1326.
JA053462R
9
J. AM. CHEM. SOC. VOL. 127, NO. 35, 2005 12185