Organometallics
Article
over several days, which were dried in vacuo. Yield: 689 mg, 0.412
mmol, 75%; mp 179 °C. 1H NMR (CD2Cl2, 500 MHz): δ 7.71 (s, 8H,
BArF ), 7.55 (s, 4H, BArF ), 7.46−7.16 (m, 24H, ArH), 6.95−6.81 (m,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
4
4
3
3
8H, ArH), 6.68 (t, JH,H = 7.6 Hz, 1H, p-CH2Ph), 6.54 (d, JH,H = 6.8
Hz, 2H, o-CH2Ph), 2.53 (m, 1H, CH2Ph). 31P{1H} NMR (202 MHz,
1
1
CD2Cl2): δ 24.01 (s, JPt,P = 1660 Hz), 21.68 (s, JPt,P = 2700 Hz).
Anal. Calcd for C75H49BF24P2Pt: C, 53.81; H, 2.95. Found: C, 53.66;
H, 2.89.
NMR spectra, computational thermochemistry, NBO
analysis of 4 and 4-bf3, and crystal structure report for
trans-(PPh3)2Pd(CH2Ph)Cl. This known compound43 was pre-
pared through a known procedure. To a yellow suspension of
Pd(PPh3)4 (2.77 g, 2.40 mmol) in degassed benzene was added an
excess of degassed benzyl chloride (10 mL) via cannula. After 30 min,
the resulting dark yellow solution was reduced in vacuo. Diethyl ether
(40 mL) was added to precipitate a yellow solid. Crude yield: 1.33 g,
1.76 mmol, 73%. Recrystallization from DCM/pentane provided
yellow material with spectra consistent with literature values.43
[(PPh3)2Pd(CH2Ph)][BArF ] (1b) (PDF)
4
Crystallographic Information File for [(PPh3)2Pd-
(CH2Ph)][BArF ] (1b) (CIF)
4
Cartesian coordinates for all computed structures (XYZ)
AUTHOR INFORMATION
Corresponding Author
Notes
■
[(PPh3)2Pd(CH2Ph)][BArF ] (1b). To a 20 mL scintillation vial in
4
the glovebox were added (PPh3)2Pd(CH2Ph)Cl (85 mg, 0.11 mmol),
NaBArF (99 mg, 0.11 mmol, 1.0 equiv), and DCM (3 mL). The
4
mixture was allowed to stir for 2 h. After filtration through Celite, the
solution was concentrated and transferred to a 4 mL vial. Layering the
solution with toluene and cooling resulted in yellow-orange crystals,
which were dried in vacuo and washed with toluene and pentane.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
1
This research was supported in part by the National Science
Foundation through major research instrumentation grant
number CNS-09-58854. We thank Boulder Scientific for a gift
of B(C6F5)3 and Dr. Charlie DeBrosse for performing and
analyzing the HMBC NMR experiment. G.E.D. thanks Dr.
Christine Hahn (Texas A&M−Kingsville) for helpful dis-
cussions.
Yield: 138 mg, 0.087 mmol, 79%; mp 136 °C (dec). H NMR (500
MHz, CD2Cl2): δ 7.72 (s, 8H, BArF ), 7.55 (s, 4H, BArF ), 7.49−6.69
4
4
3
(m, 35H, ArH), 2.99 (t, JP,H = 4.4 Hz, 2H, CH2Ph). 31P NMR (202
MHz, CD2Cl2): δ 33.75 (s), 23.32 (s). Anal. Calcd for
C75H49BF24P2Pd: C, 56.82; H, 3.12. Found: C, 56.56; H, 3.11.
Reaction of [(PPh3)2Pt(CH2Ph)][BArF ] (1a) with 1 atm of CO.
4
To a J. Young-style NMR tube were added 20 mg [(PPh3)2Pt-
(CH2Ph)][BArF ] and 0.5 mL of DCM-d2. The tube was attached to a
4
Schlenk manifold, subjected to three freeze−pump−thaw cycles (in a
liquid N2 bath), backfilled with CO (1 atm), and sealed. The starting
compound is immediately converted to trans-[(PPh3)2(CO)Pt-
REFERENCES
■
(1) Wang, C.; Xi, Z. Chem. Soc. Rev. 2007, 36, 1395−1406.
(2) Butts, S. B.; Holt, E. M.; Strauss, S. H.; Alcock, N. W.; Stimson,
R. E.; Shriver, D. F. J. Am. Chem. Soc. 1979, 101, 5864−5866.
(3) Butts, S. B.; Strauss, S. H.; Holt, E. M.; Stimson, R. E.; Alcock, N.
W.; Shriver, D. F. J. Am. Chem. Soc. 1980, 102, 5093−5100.
(4) (a) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
2008, 130, 11874−11875. (b) Miller, A. J. M.; Labinger, J. A.; Bercaw,
J. E. Organometallics 2010, 29, 4499−4516. (c) West, N. M.; Labinger,
J. A.; Bercaw, J. E. Organometallics 2011, 30, 2690−2700.
(d) Llewellyn, S. A.; Green, M. L. H.; Cowley, A. R. Dalton Trans.
2006, 1776−1783.
(5) Williams, D. B. G.; Shaw, M. L.; Green, M. J.; Holzapfel, C. W.
Angew. Chem., Int. Ed. 2008, 47, 560−563.
(6) Corcoran, R. C.; Ma, J. J. Am. Chem. Soc. 1992, 114, 4536−4542.
(7) Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stauffert, P.;
Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 4440−4451.
(CH2Ph)][BArF ] (2) and trans-[(PPh3)2(CO)Pt(COCH2Ph)]-
4
[BArF ] (3). The mixture of compounds cannot be purified or
4
isolated due to facile loss of CO. trans-[(PPh3)2(CO)Pt(CH2Ph)]-
[BArF ] (2): 1H NMR (CD2Cl2, 500 MHz) δ 2.74 (t, 3JP,H = 10.0 Hz,
4
2JPt,H = 77.6 Hz); 31P{1H} NMR (CD2Cl2, 202 MHz) δ 18.92 (s, 1JPt,P
= 2740 Hz). trans-[(PPh3)2(CO)Pt(COCH2Ph)][BArF ] (3): 1H
4
NMR (CD2Cl2, 500 MHz) δ 2.95 (s); 31P{1H} NMR δ 13.12 (s, 1JPt,P
= 3004 Hz).
Reaction of [(PPh3)2Pd(CH2Ph)][BArF ] (1b) with 1 atm of CO.
4
To a J. Young-style NMR tube were added 20 mg of [(PPh3)2Pd-
(CH2Ph)][BArF ] and 0.5 mL of DCM-d2. The tube was attached to a
4
Schlenk manifold, subjected to three freeze−pump−thaw cycles (in a
liquid N2 bath), backfilled with CO (1 atm), and sealed. Over several
days the starting compound forms trace trans-[(PPh3)2(CO)Pd-
1
(COCH2Ph)][BArF ] (4): H NMR (CD2Cl2, 500 MHz) δ 3.32 (s).
Computational4 Details. Density functional theory (DFT)
calculations were performed using Gaussian 09, revision C.01
(keywords in parentheses below).44 The M06-L functional34 (m06l)
and def2-TZVP35 basis set (def2tzvp) were used for all nonmetal
atoms, while the def2-QZVP35 (qzvp) basis set was used for metals.
The associated ECPs45 were downloaded from the EMSL basis set
employed for all atoms (Denfit). All calculations were performed using
the SMD solvation model of Truhlar and co-workers (scrf = smd,
solvent = dichloromethane).37 Justification of the above method for
calculating organometallic thermochemistry is provided by Gusev,36
who showed M06-L/TZVP/TZVPfit to be economical and accurate
for this purpose.
(8) Liberman-Martin, A. L.; Bergman, R. G.; Tilley, T. D. J. Am.
Chem. Soc. 2013, 135, 9612−9615.
(9) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7734−7735.
(10) Anderson, G. D. W.; Boys, O. J.; Cowley, A. R.; Green, J. C.;
Green, M. L. H.; Llewellyn, S. A.; Maresca von Beckh, C.; Pascu, S. I.;
Vei, I. C. J. Organomet. Chem. 2004, 689, 4407−4419.
(11) (a) Koito, Y.; Nakajima, K.; Kobayashi, H.; Hasegawa, R.;
Kitano, M.; Hara, M. Chem. - Eur. J. 2014, 20, 8068−8075. (b) Hunt, I.
R.; Rogers, C.; Woo, S.; Rauk, A.; Keay, B. A. J. Am. Chem. Soc. 1995,
117, 1049−1056. (c) Toyota, S.; Asakura, M.; Sakaue, T. Bull. Chem.
Soc. Jpn. 2002, 75, 2667−2671. (d) Asao, N.; Asano, T.; Yamamoto, Y.
Angew. Chem., Int. Ed. 2001, 40, 3206−3208. (e) Reetz, M. T.;
Huellmann, M.; Massa, W.; Berger, S.; Rademacher, P.; Heymanns, P.
J. Am. Chem. Soc. 1986, 108, 2405−2408.
Optimized geometries were obtained using tight convergence
criteria (opt = tight) and an ultrafine grid (int = ultrafine). The
optimized geometries were used in frequency calculations to ensure
the absence of imaginary frequencies and to provide thermochemistry
(enthalpy and free energy) values at 298.15 K and 1 atm. Natural
bonding orbital calculations were performed using NBO version 6.048
in stand-alone GenNBO mode, using the NBO3 ARCHIVE (0.47)
files generated from Gaussian 09 calculations.
(12) Vilches-Herrera, M.; Domke, L.; Borner, A. ACS Catal. 2014, 4,
̈
1706−1724.
(13) (a) Lin, Y.-S.; Yamamoto, A. Organometallics 1998, 17, 3466−
3478. (b) Lin, Y.-S.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1998, 71,
723−734.
(14) Johns, A. M.; Utsunomiya, M.; Incarvito, C. D.; Hartwig, J. F. J.
Am. Chem. Soc. 2006, 128, 1828−1839.
F
Organometallics XXXX, XXX, XXX−XXX