Angewandte
Chemie
[24]
[8] a) S. Keinan, E. Zojer, J.-L. Bredas, M. A. Ratner, T. J. Marks,
THEOCHEM 2003, 633, 227 – 235; b) I. D. L. Albert, T. J.
Marks, M. A. Ratner, J.Am.Chem.Soc. 1998, 120, 11174 –
11181; c) S. Keinan, M. A. Ratner, T. J. Marks, unpublished
computations.
[9] R. Fröhlich, H. Musso, Chem.Ber. 1985, 118, 4649 – 4651.
[10] H. Kang, A. Facchetti, C. Stern, A. L. Rheingold, W. S. Kassel,
T. J. Marks, Org.Lett. 2005, 7, 3721 – 3724.
PreliminaryTeng and Man
measurements on poled
TMC-1 and TMC-2 containing guest–host polymers reveal
verylarge EO coefficients ( r33) at 1310 nm. Poly(vinylphenol)
films containing 10 wt% TMC-1 and 5 wt% TMC-2, poled at
100 VmmÀ1, exhibit nonresonant r33 responses of 48 and
320 pmVÀ1, respectively. Lower EO responses are observed
in less polar matrices, presumablydue to the aggregation.
These results suggest obvious molecular and macromolecular
modification strategies, currentlyunder investigation, to
address the aggregation issue and to further enhance r33.
In summary, twisted p-electron system chromophores
have been prepared and exhibit exceptional molecular hyper-
polarizabilities, with nonresonant mb values as high as
À488000 10À48 esu, while preliminarypoled guest–host
experiments indicate promise for EO applications. An
interesting observation here is that the ultralarge hyper-
polarizabilities exhibited bythese unconventional chromo-
phores seem far beyond classical two-level behavior. Kuzyk
argues that the b responses of all organic chromophores
prepared to date fall far short of the theoretical quantum
[11] A. Abbotto, S. Bradamante, A. Facchetti, G. A. Pagani, J.Org.
Chem. 1997, 62, 5755 – 5765.
[12] See Supporting Information.
[13] TMC-1 crystals were grown from saturated acetonitrile solu-
tions. All measurements were made on a Bruker SMART CCD
diffractometer with graphite-monochromated MoKa (0.71073 )
radiation at 153(2) K. The structure was solved bydirect
methods and Fourier techniques with SHELXTL. Non-hydro-
gen atoms were refined anisotropically. The hydrogen atoms
were included in idealized positions, but not refined. C28H37N3,
M = 415.60, orthorhombic, Pbca, a = 15.6106(16), b =
16.1279(17), c = 19.714(2) , V= 4963.2(9) 3, Z = 8, 1cald
=
1.110 gcmÀ3, 2qmax = 57.648. Of the 43353 reflections which
were collected, 6031 were independent (Rint = 0.0654), 269
parameters, R1 = 0.0865 (for reflections with I > 2s(I)), wR2 =
0.3100 (for all reflections). CCDC 282594 contains the supple-
mentarycrystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
[25]
limits, for reasons that are presentlynot entirelyclear.
Twisted p-electron system chromophores may provide new
insight into the reasons.
[14] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G.
Received: May10, 2005
Revised: September 20, 2005
Published online: November 21, 2005
Orpen, R. Taylor, J.Chem.Soc.Perkin Trans.2
1987, S1.
[15] J. C. Cole, J. M. Cole, G. H. Cross, M. Farsari, J. A. K. Howard,
M. Szablewski, Acta Crystallogr.Sect.B 1997, 53, 812 – 821.
[16] A. Das, J. C. Jeffery, J. P. Maher, J. A. McCleverty, E. Schatz,
M. D. Ward, G. Wollermann, Inorg.Chem. 1993, 32, 2145 – 2155.
[17] H. L. Ammon, G. L. Wheeler, J.Am.Chem.Soc. 1975, 97, 2326 –
2336.
[18] Variations in q should significantlyaffect the relative contribu-
tions of quinoid versus zwitterion structures, hence 13C NMR
and optical spectra.
Keywords: chromophores · electrooptics · nonlinear optics ·
.
pi systems · zwitterions
[1] Recent reviews of EO materials: a) L. R. Dalton, Pure Appl.
Chem. 2004, 76, 1421 – 1433; b) F. Kajzar, K.-S. Lee, A. K.-Y.
Jen, Adv.Polym.Sci. 2003, 161, 1 – 85; c) M. G. Kuzyk, Phys.Rev.
Lett. 2000, 85, 1218 – 1221; d) Molecular Nonlinear Optics:
Materials, Phenomena and Devices (Ed.: J. Zyss), Chem.Phys.
1999, 245 (Special issue); e) T. Verbiest, S. Houbrechts, M.
Kauranen, K. Clays, A. Persoons, J.Mater.Chem. 1997, 7, 2175 –
2189; f) S. R. Marder, B. Kippelen, A. K.-Y. Jen, N. Peygham-
barian, Nature 1997, 388, 845 – 851.
[19] DFT-derived ground state dipole moments are 27.0 and 50.6 D
for TMC-1 and TMC-2, respectively(S. Keinan, M. A. Ratner,
T. J. Marks).
[20] Merocyanine dye aggregation studies reveal CT band blue-shifts
due to centrosymmetric dimers: F. Würthner, S. Yao, T.
Debaerdemaeker, R. Wortmann, J.Am.Chem.Soc. 2002, 124,
9431 – 9447.
[21] a) C. S. Johnson, Jr., Prog.Nucl.Magn.Reson.Spectrosc.
1999,
34, 203 – 256; b) P. Stilbs, Prog.Nucl.Magn.Reson.Spectrosc.
1987, 19, 1 – 45; c) D. Zuccaccia, A. Macchioni, Organometallics
2005, 24, 3476 – 3486; d) C. Zuccaccia, N. G. Stahl, A. Macchioni,
M.-C. Chen, J. A. Roberts, T. J. Marks, J.Am.Chem.Soc. 2004,
126, 1448 – 1464.
[2] S. R. Marder, D. N. Beratan, L.-T. Cheng, Science 1991, 252,
103 – 106.
[3] a) K. Staub, G. A. Levina, S. Barlow, T. C. Kowalczyk, H. S.
Lackritz, M. Barzoukas, A. Fort, S. R. Marder, J.Mater.Chem.
2003, 13, 825 – 833; b) A. Abbotto, L. Beverina, S. Bradamante,
A. Facchetti, C. Klein, G. A. Pagani, M. Redi-Abshiro, R.
Wortmann, Chem.Eur.J. 2003, 9, 1991 – 2007; c) A. K.-Y. Jen, H.
Ma, X. Wu, J. Wu, S. Liu, S. R. Marder, L. R. Dalton, C.-F. Shu,
SPIE Proc. 1999, 3623, 112 – 119.
[4] S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M.
Blanchard-Desce, J. W. Perry, J. Skindhoej, Science 1994, 263,
511 – 514.
[5] I. D. L. Albert, T. J. Marks, M. A. Ratner, J.Am.Chem.Soc.
1997, 119, 6575 – 6582.
[6] A. Galvan-Gonzalez, K. D. Belfield, G. I. Stegeman, M. Canva,
S. R. Marder, K. Staub, G. Levina, R. J. Twieg, J.Appl.Phys.
2003, 94, 756 – 763, and references therein.
[22] a) D. Roberto, R. Ugo, S. Bruni, E. Cariati, F. Cariati, P.
Fantucci, I. Invernizzi, S. Quici, I. Ledoux, J. Zyss, Organo-
metallics 2000, 19, 1775 – 1788; b) I. Ledoux, J. Zyss, Chem.Phys.
1982, 73, 203 – 213; c) K. D. Singer, A. F. Garito, J.Chem.Phys.
1981, 75, 3572 – 3580.
[23] EFISH measurements in DMF confirm the verylarge TCM-2
response, with mb = À84000 10À48 esu at 1.1 10À6 m. That the
magnitude of b is lower in more polar solvents is common for
zwitterions.[3b]
[24] a) C. C. Teng, H. T. Man, Appl.Phys.Lett. 1990, 56, 1734 – 1736;
b) J. S. Schildkraut, Appl.Opt. 1990, 29, 2839 – 2842.
[25] K. Tripathy, J. P. Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, A. M.
Kelley, J.Chem.Phys. 2004, 121, 7932 – 7945.
[7] a) S. Di Bella, New J.Chem. 2002, 26, 495 – 497; b) G. Meshulam,
G. Berkovic, Z. Kotler, Opt.Lett. 2001, 26, 30 – 32; c) S.
Brasselet, J. Zyss, J.Nonlinear Opt.Phys.Mater. 1996, 5, 671 –
693; d) I. Ledoux, J. Zyss, Pure Appl.Opt. 1996, 5, 603 – 612.
Angew. Chem. Int. Ed. 2005, 44, 7922 –7925
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7925