G. Sabitha et al. / Tetrahedron Letters 46 (2005) 6567–6570
6569
c
a
b
OH
OH
OH
OH
19
20
-5
O
OH
d
f
O
OR
OR
OH
24
R = H
R = TBDPS
21
22
23
e
O
O
O
OH
OH
O
O
j
g
h
CHO
OR
OR
4
25
R = TBDPS
R = H
26
27
i
TBSO
TBSO
O
O
O
OH
OMe
13
O
O
OH
l
k
m
29
30
O
O
TBSO
TBSO
n
O
O
1
18
Scheme 3. Reagents and conditions: (a) (1) allyl bromide, Na2CO3/TBAI; (2) CuI, DMF, rt, 82%; (b) LiAlH4, THF, rt, 75%; (c) (1) (ꢀ)-DET, Ti(O-i-
˚
Pr)4; (2) TBHP, 4 A MS; (3) DCM, ꢀ20 °C, 82%; (d) Red-Al, THF, ꢀ15 °C to rt, 90%; (e) imidazole, TBDPS–Cl, DCM 0 °C to rt, 1 h, 95%; (f)
PdCl2, CuCl, O2, THF–H2O (10:1) rt, 3–4 h, 65%; (g) LiAlH4, LiI (1:1), Et2O, ꢀ78 °C to rt, 1 h, 84%; (h) 2,2-DMP, PPTS, 12 h, 94%; (i) TBAF,
THF, 1 h, 90%; (j) (1) Dess–Martin periodinane; (2) DCM, rt, 1 h, 88%; (k) (CF3CH2O)2 P(O)CH2COOCH3, NaH, THF, ꢀ80 °C, 0.5 h, 78%; (l) (1)
0.1 N HCl, MeOH, 86%; (2) ZnCl2, THF, D, 80%; (m) DCC, DMAP, 82%; (n) oxone, aq MeOH, rt, 24 h, 80%.
in THF provided the alcohol 27, which was oxidized to
aldehyde 4. A modified Wadsworth–Emmons reaction
of 4 using methyl(bistrifluoroethyl)phosphonoacetate
in the presence of NaH in THF gave Z-unsaturated ester
29, exclusively. After hydrolyzing the acetonide with
dilute acid, lactonization of the hydroxy ester was
achieved by treatment with ZnCl2 in THF at reflux to
give hydroxylactone 30,17 which was identical to that
of the material prepared by Solladie and Gressot-
Kempt.5 Next, this was acylated with 13 following the
OÕDoherty procedure7a to provide protected tarchonan-
thuslactone 18 in 80% yield. The spectral data of 18 was
identical to those of the material prepared by us. Depro-
tection of TBS groups as before completed the total syn-
thesis of tarchonanthuslactone 1 (Scheme 3).14 The
spectral data and optical rotation were again in agree-
ment with those of the natural product.5
References and notes
1. Bohlmann, F.; Suwita, A. Phytochemistry 1979, 18,
677.
2. Nakata, T.; Hata, N.; Iida, K.; Qishi, T. Tetrahedron Lett.
1987, 46, 5661.
3. (a) Hsu, F.; Chem, Y. C.; Cheng, J. T. Planta Med. 2000,
66, 228; (b) Jodynis-Liebert, J.; Murias, M.; Bloszyk, E.
Planta Med. 2000, 66, 199.
4. (a) Mori, Y.; Suzuki, M. J. Chem. Soc., Perkin Trans. 1
1990, 1809; (b) Mori, Y.; Kageyama, H.; Suzuki, M.
Chem. Pharm. Bull. 1990, 38, 2574.
5. Solladie, G.; Gressot-Kempt, L. Tetrahedron: Asymmetry
1996, 7, 2371.
6. Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V.
J. Org. Chem. 2001, 66, 2512.
7. (a) Garaas, S.-D.; Hunter, T. J.; OÕDoherty, G. A. J. Org.
Chem. 2002, 67, 2682; (b) Enders, D.; Steinbusch, D. Eur.
J. Org. Chem. 2003, 4550.
8. Hanessian, S.; Ugolini, A.; Dube, D.; Glamyan, A. Can. J.
Chem. 1984, 62, 2146.
In summary, the total synthesis of (ꢀ)-tarchonanthus-
lactone has been accomplished using chelation-con-
trolled reduction reaction as a key step via two
different approaches.
9. Ghosh, A. K.; Lei, H. J. Org. Chem. 2002, 67,
8783.
10. Spectral data of compound 10: 1H NMR (200 MHz,
CDCl3): d 1.30–1.60 (m, 10H), 1.60–1.70 (m, 2H), 2.20
(m, 2H), 3.54 (t, 1H, J = 7.3 Hz), 3.80–3.90 (m, 1H), 4.00
(dd, 1H, J = 8.1, 5.6 Hz), 4.20–4.30 (m, 1H), 5.00 (s, 1H),
5.12 (d, 1H, J = 3.2 Hz), 5.70–5.90 (m, 1H). EI Mass: m/z
Acknowledgements
25
226 (M+), ½aꢁD +1.54 (c 1.5, CHCl3).
K.S. thanks UGC, and N.M.R. and M.R. thank CSIR,
New Delhi, for the awards of fellowships.
11. For a review, see: Grubbs, R. H.; Chang, S. Tetrahedron
1998, 54, 4413.