The Catalytic Mannich Reaction of
1,1-Difluoro-2-trialkyl(aryl)silyl-2-trimethyl-
silyloxyethenes: Preparation of â-Amino
Acid Derivatives
FIGURE 1. Two strategies for the formation of fluorinated
â-amino acids.
Woo Jin Chung, Masaaki Omote, and John T. Welch*
Department of Chemistry, University at Albany,
State University of New York, 1400 Washington Avenue,
Albany, New York 12222
tetrahedral transition state mimics may competitively
inhibit serine proteases such as elastase.7
In general, two strategically different approaches to
the incorporation of fluorine in â-amino acids have been
employed, either the R-carbon can be fluorinated (1) or
â-fluoroalkyl groups can be introduced (2) (Figure 1).
The combination of fluorinated â-amino acid moieties
with naturally occurring pharmacophores has led to the
construction of new molecules with enhanced medicinal
properties.8
Received May 12, 2005
The synthesis of â-fluoroalkyl-â-amino acids (1) is
readily tractable via several general approaches.9 On the
other hand, reports of methods for the formation of R,R-
difluoro-â-amino acids (2) are still limited,10 even though
R,R-difluoro-â-amino acids (2) are precursors of fluori-
nated â-lactam antibiotics.11 Ethyl bromodifluoroacetate
has been utilized in Reformatsky-type reactions with
N-tert-butylsulfinimines,10e-g resin-bound imines,10d or
oxazolidines10c as well as in the formation of difluoro-
ketenesilylacetals10a,b that can be utilized in Lewis acid
Catalytic Mannich reactions of 1,1-difluoro-2-trialkyl(aryl)-
silyl-2-trimethylsilyloxyethenes (3) with a variety of sulfo-
nylimines were utilized for the preparation of R,R-difluoro-
â-amino acid derivatives (7). The influence of the Lewis acid
on the reaction was examined. Methods for the conversion
of R,R-difluoroacylsilanes to R,R-difluorocarboxylic acids were
also explored.
â-Amino acids and derivatives, although less abundant
than their R-analogues, have proven utility as building
blocks for molecules with applications in pharmaceutical
and material science.1 â-Amino-R-hydroxy acids are of
considerable importance as crucial functional groups in
taxol2 and bestatin.3 â-Peptides, comprised of â-amino
acids, have found utility in the investigation of the
structure and stabilization of proteins. On substitution
of R-amino acids, â-amino acids only very modestly
perturb the backbone steric demands yet still form amide
bonds capable of participating in intramolecular hydro-
gen bonds.4 This utility has led to significant efforts
toward the synthesis of â-amino acids.5
(6) (a) Fluorine-Containing Amino Acids. Synthesis and Properties;
Kosher, V. P., Soloshonok, V. A., Eds.; John Wiley and Sons Ltd.:
Chichester, UK, 1994. (b) Biomedical Frontiers of Fluorine Chemistry;
Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American Chemical
Society: Washington, DC, 1996. (c) Enantiocontrolled Synthesis of
Fluoro-Organic Compounds: Stereochemical Challenges and Biome-
dicinal Targets; Soloshonok, V. A., Ed.; Wiley: Chichester, UK, 1999.
(7) (a) Rauber, P.; Angliker, H.; Walker, B.; Shaw, E. Biochem. J.
1986, 239, 633. (b) Imperiali, B.; Abeles, R. H. Biochemistry 1986, 25,
3760. (c) Schirlin, D.; Baltzer, S.; Altenburger, J. M.; Tarnus, C.; Remy,
J. M. Tetrahedron 1996, 52, 305.
(8) (a) Uoto, K.; Ohsuki, S.; Takenoshita, H.; Ishiyama, T.; Iimura,
S.; Hirota, Y.; Mitsui, I.; Terasawa, H.; Soga, T. Chem. Pharm. Bull.
1997, 45, 1793. (b) Kuznetsova, L.; Ungureanu, I. M.; Pepe, A.; Zanardi,
I.; Wu, X.; Ojima, I. J. Fluorine Chem. 2004, 125, 487-500.
(9) (a) Soloshonok, V. A.; Kirilenko, A. G.; Fokina, N. A.; Shishkina,
I. P.; Galushko, S. V.; Kukhar, V. P.; Svedas, V. K.; Kozolova, E. V.
Tetrahedron: Asymmetry 1994, 5, 1119. (b) Soloshonok, V. A.; Kirilenko,
A. G.; Fokina, N. A.; Kukhar, V. P.; Galushko, S. V.; Svedas, V. K.;
Resnati, G. Tetrahedron: Asymmetry 1994, 5, 1225. (c) Soloshonok, V.
A.; Kukhar, V. P. Tetrahedron 1996, 52, 6953. (d) Soloshonok, V. A.;
Ono, T.; Soloshonok, I. V. J. Org. Chem. 1997, 62, 7538. (e) Soloshonok,
V. A.; Soloshonok, I. V.; Kukhar, V. P.; Svedas, V. K. J. Org. Chem.
1998, 63, 1878. (f) Volonterio, A.; Bravo, P.; Zanda, M. Org. Lett. 2000,
2, 1827. (g) Volonterio, A.; Bravo, P.; Moussier, N.; Zanda, M.
Tetrahedron Lett. 2000, 41, 6517. (h) Fustero, S.; Salavert, E.; Pina,
B.; Ramirez de Arellano, C.; Asensio, A. Tetrahedron 2001, 57, 6475.
(i) Pesenti, C.; Arnone, A.; Bellosta, S.; Bravo, P.; Canavesi, M.; Corradi,
E.; Frigerio, M.; Meille, S. V.; Monetti, M.; Panzeri, W.; Viani, F.;
Venturini, R.; Zanda, M. Tetrahedron 2001, 57, 6511.
Selective introduction of fluorine is a well-established
strategy for the modulation of the pharmacological
properties of biologically active molecules.6 For example,
peptidomimetics in which the scissile amide bond in
peptides is replaced by a gem-difluoroketone group often
exhibit improved activities relative to nonfluorinated
compounds. Fluorination at the R-position can promote
formation of stable hydrates and hemiacetals, which as
* To whom correspondence should be addressed. Phone: +1-518-
442-4455. Fax: +1-518-442-3462.
(1) (a) Enantioselective Synthesis of â-Amino acids; Juaristi, E., Ed.;
Wiley-VCH: New York, 1997. (b) Cheng, R. P.; Gellman, S. H.;
DeGrado, W. F. Chem. Rev. 2001, 101, 3219.
(10) (a) Taguchi, T.; Kitarawa, O.; Suda, Y.; Ohkawa, S.; Hashimoto,
A.; Iitaka, Y.; Kobayashi, Y. Tetrahedron Lett. 1988, 29, 5291. (b) Iseki,
K.; Kuroki, Y.; Asada, D.; Takahashi, M.; Kishimoto, S.; Kobayashi,
Y. Tetrahedron 1997, 53, 10271. (c) Marcotte, S.; Pannecoucke, X.;
Feasson, C.; Quirion, J.-C. J. Org. Chem. 1999, 64, 8461. (d) Vidal, A.;
Nefzi, A.; Houghten, R. A. J. Org. Chem. 2001, 66, 8268. (e) Soloshonok,
V. A.; Ohkura, H.; Sorochinsky, A.; Voloshin, N.; Markovsky, A.; Belik,
M.; Yamazaki, T. Tetrahedron Lett. 2002, 43, 5445. (f) Staas, D. D.;
Savage, K. L.; Homnick, C. F.; Tsou, N. N.; Ball, R. G. J. Org. Chem.
2002, 67, 8276. (g) Sorochinsky, A.; Voloshin, N.; Markovsky, A.; Belik,
M.; Yasuda, N.; Uekusa, H.; Ono, T.; Berbasov, D. O.; Soloshonok, V.
A. J. Org. Chem. 2003, 68, 7448.
(2) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed.
1994, 33, 15.
(3) Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T.
J. Antibiot. 1976, 29, 97.
(4) (a) Iverson, B. L. Nature 1997, 385, 113. (b) Seebach, D.;
Matthews, J. L. J. Chem. Soc., Chem. Commun. 1997, 2015. (c)
Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (d) Gademann, K.;
Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6. 605. (e)
Degrado, W. F.; Schneider, J. P.; Hamuro, Y. J. Peptide Res. 1999, 54,
206.
(5) (a) Cole, D. C. Tetrahedron 1994, 50, 9517. (b) Cardillo, G.;
Tomasini, C. Chem. Soc. Rev. 1996, 25, 117.
(11) (a) van de Steen, F. H.; van Koten, G. Tetrahedron 1991, 47,
7503. (b) Hart, D. J.; Ha, D.-C. Chem. Rev. 1989, 89, 1447.
10.1021/jo050953l CCC: $30.25 © 2005 American Chemical Society
Published on Web 08/19/2005
7784
J. Org. Chem. 2005, 70, 7784-7787