6480
G. P. C. Silveira / Tetrahedron Letters 46 (2005) 6477–6481
Gouverneur, V.; Couture, K.; Lesimple, P.; Autret,
J.-M. WO Patent 15624, 2000; Chem. Abstr. 2000, 132,
222438; For an example of the synthesis of an efaroxan
derivative, see: (g) Mayer, P.; Loubat, C.; Imbert, T.
Heterocycles 1998, 48, 2529–2534.
Based on these data our product has an optical purity
>95% ee. The synthesis of the (R)-(+)-2-ethyl-2,3-
dihydrobenzofuran carboxylic acid 2 was accomplished
in eight steps, from the Baylis–Hillman adduct, with
an overall yield of 14%.20 The utilization of the commer-
cial (ꢀ)-DIPT in the place of (+)-DIPT should permit
access to the (S)-(ꢀ)-enantiomer using the same
synthetic strategy.21,22 Our strategy should also permit
the preparation of several derivatives of both the enan-
tiomers of efaroxan, substituted in aromatic ring.
7. For some examples of the resolution of racemic
dihydrobenzofuran carboxylic acid, see: Imbert, T.;
Mayer, P. WO Patent 35682 1996; Chem. Abstr. 1997,
126, 59852.
8. For the asymmetric synthesis of (R)-efaroxan, see: (a)
Mayer, P.; Imbert, T.; Couture, K.; Gouverneur, V.;
Mioskowski, C. WO Patent 0002836, 2000; Chem. Abstr.
2000, 132, 93199.
Finally this simple and straightforward strategy exem-
plifies clearly the synthetic potentially of the Baylis–Hill-
man reaction for the preparation of chiral compounds
of pharmaceutical interest.
9. For a recent example that demonstrates the potentiality of
the Baylis–Hillman adduct in the total synthesis of antibio-
tics, see: Mateus, C. R.; Coelho, F. C. J. Braz. Chem. Soc.
2005, 16, 386–396 (available free of charges at http://
10. For comprehensive reviews on the Baylis–Hillman reac-
tion see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayama, T.
Chem. Rev. 2003, 103, 811–891; (b) Almeida, W. P.;
Coelho, F. Quim. Nova 2000, 23, 98–105; Chem. Abstr.
2000, 132, 236562e; (c) Ciganek, E. Org. React. 1997, 51,
201; (d) Basavaiah, D.; Rao, P. D.; Hyma, R. S.
Tetrahedron 1996, 52, 8001–8062. For some new insights
about the mechanism of the Baylis–Hillman reaction
see: (e) Santos, L. S.; Pavam, C. H.; Almeida, W. P.;
Coelho, F.; Eberlin, M. N. Angew. Chem., Int. Ed. 2004,
43, 4330–4333; (f) Price, K. E.; Broadwater, S. J.;
Walker, B. J.; McQuade, D. T. J. Org. Chem. 2005, 70,
3980–3987; (g) Aggarwal, V. K.; Fulford, S. Y.; Llyod-
Jones, G. C. Angew. Chem., Int. Ed. 2005, 44, 1706–
1708.
Acknowledgements
The authors thank Fapesp for a grant to G.P.C.S.
(Fapesp no. 01/01250-0) and for financial support
(Fapesp 04/09745-0 and 02/00461-3). F.C. thanks CNPq
for a research grant and financial support (CNPq
302758/2004-6 and 475652/2004-5). The authors are
grateful to Professor C. H. Collins for English revision
of this text.
References and notes
11. (a) Almeida, W. P.; Coelho, F. Tetrahedron Lett. 1998, 39,
8609–8612; (b) Coelho, F.; Almeida, W. P.; Veronese, D.;
Lopes, E. C. S.; Silveira, G. P. C.; Rossi, R. C.; Pavam,
C. H. Tetrahedron 2002, 58, 7437–7447.
1. (a) Regunathan, S.; Reis, D. J. Annu. Rev. Pharmacol.
Toxicol. 1996, 36, 511–544; (b) Eglen, R. M.; Hudson, A.
L.; Kendall, D. A.; Nutt, D. J.; Morgan, N. G.; Wilson, V.
G.; Dillon, M. P. Trends Pharmacol. Sci. 1998, 19, 381–
390; (c) To know more about the indication of efaroxan
for the treatment of Parkinson disease see: Colpaert, F.;
Briley, M.; Imbert, T. WO Patent 00145 1995; Chem.
Abstr. 1995, 122, 123150; (d) For the use of efaroxan in the
treatment of Alzheimer disease, see: Colpaert, F.; Briley,
M.; Imbert, T. WO Patent 01791 1995; Chem. Abstr. 1995,
122, 151400; (e) Yoshida, M.; Mariano, P. S. J. Org.
Chem. 1996, 61, 4439–4449.
2. (a) Morgan, N. G. Exp. Opin. Invest. Drugs 1999, 8, 575;
(b) Morgan, N. G.; Chan, S. L. F.; Mourtada, M.; Monks,
L.; Ramsden, C. A. Ann. NY Acad. Sci. 1999, 881, 217–
228.
3. Chapleo, C.; Doxey, J. C.; Stillings, M. R. WO Patent
05171, 1992; Chem. Abstr. 1992, 117, 131200.
12. For a recent discussion about the mechanism of cuprate
addition, see: (a) Woodward, S. Chem. Soc. Rev. 2000, 29,
393–401, and reference cited therein; (b) Yamanaka, M.;
Nakamura, E. Organometallics 2001, 20, 5675–5681.
13. There are in the literature some controversies concerning
the mechanism of the 1,4-addition of organocuprate
reagent on a,b-unsaturated compounds. Based on avail-
able theoretical evidences, compound 12 perhaps could be
formed as shown below. Further studies should be done to
confirm this proposition.
Li
Li
OAc O
OAc O
OAc O
R
OCH3
R
OCH3
R
OCH3
Cu(CH3)2
III
Cu(CH3)2
oxidative addition (16)
π-complex (15)
9
4. To some insights into the action mechanism of insulin, see:
Laborde, E.; Manchem, V. P. Curr. Med. Chem. 2002, 9,
2231–2242.
5. For the determination of the absolute stereochemistry of
the biologically active (R)-efaroxan, see: Belin, C.; Chau-
vet, A.; Leloup, J. M.; Ribet, J. P.; Maurel, J. L. Acta
Crystallogr. 1995, C51, 2439–2441.
R= 2-FC6H4
O
R
OCH3
CO2CH3
R
III
Cu(CH3)2
(Me)2Cu
O
Compound 12
R
OCH3
III
Cu(CH3)2
copper (III) complex (17)
6. For the racemic synthesis of efaroxan, see: (a) Edwards, C.
R.; Readhead, M. J.; Tweddle, N. J. J. Heterocycl. Chem.
1987, 24, 495–496; (b) Mayer, P.; Brunel, P.; Imbert, T.
Bioorg. Med. Chem. Lett. 1999, 9, 3021–3022; (c) Couture,
K.; Gouverneur, V.; Mioskowski, C. Bioorg. Med. Chem.
Lett. 1999, 9, 3023–3026; (d) Clews, J.; Morgan, N. G.;
Ramsden, C. A. J. Heterocycl. Chem. 2001, 38, 519–521;
(e) Chapleo, C. B.; Myers, P. L.; Butler, R. C. M.; Davis,
J. A.; Doxey, J. C.; Higgins, S. D.; Myers, M.; Roach, A.
G.; Smith, C. F. C.; Stillings, M. R.; Welbourn, A. P. J.
Med. Chem. 1984, 27, 570–576; (f) Mioskowski, C.;
14. Christenson, B.; Hallnemo, G.; Ullenius, C. Tetrahedron
1991, 47, 4739–4752.
15. (a) Sharpless, K. B.; Gao, Y.; Hanson, R. M.; Klunder, J.
M.; Ko, S. Y.; Masamune, H. J. Am. Chem. Soc. 1987,
109, 5765–5780; (b) Sharpless, K. B.; Carlier, P. R. J. Org.
Chem. 1989, 54, 4016–4018.
16. Rossi, R. C.; Coelho, F. Tetrahedron Lett. 2002, 43, 2800–
2897.