ORGANIC
LETTERS
2005
Vol. 7, No. 20
4495-4497
Synthesis of Novel Enantiopure
Fluorinated Building Blocks from
Acyclic Chiral Allylsilanes
Matthew Tredwell, Kenny Tenza, Ma Carmen Pacheco, and
Ve´ronique Gouverneur*
UniVersity of Oxford, Chemistry Research Laboratory, 12 Mansfield Road,
OX1 3TA Oxford. U.K.
Received August 2, 2005
ABSTRACT
Homochiral
enantiopure allylsilanes. The key step for introduction of the fluorine substituent is an electrophilic fluorodesilylation reaction carried out in
the presence of Selectfluor. Reduction of the resulting -fluorinated pentenoic acid into the corresponding fluorinated alcohol was also performed
leading to the formation of an enantiopure second-generation fluorinated building block.
â-fluorinated γ,δ-unsaturated carboxylic acids with an allylic fluorinated stereogenic center are available from the corresponding
â
The extraordinary range of applications of fluorinated com-
pounds has stimulated the search for inventive and efficient
approaches to their synthesis.1 The incorporation of a fluorine
substituent R to a carbonyl group is now well established
with several reagent-based enantioselective fluorinations of
enolates or silyl enol ethers having been reported in the
literature.2 More recently, it has been found that transition-
metal complexes and small organic molecules are efficient
catalysts for the formation of enantioenriched R-fluorinated
carbonyl derivatives.3 By way of contrast, only a few syn-
thetic routes have been developed for the preparation of
homochiral fluorinated building blocks other than R-fluor-
inated carbonyl compounds. For example, a general meth-
odology for the preparation of enantiopure â-fluorinated γ,δ-
unsaturated carboxylic acids with a stereogenic fluorinated
allylic carbon has yet to be developed.4 As part of a research
program aimed at developing innovative methodologies for
the preparation of fluorinated compounds, we have reported
that nonaromatic organosilanes, such as vinylsilanes, allyl-
silanes and allenylmethylsilanes, react with 1-chloromethyl-
4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluorobo-
(3) (a) Ma, J.-A.; Cahard, D. Chem. ReV. 2004, 104, 6119-6146. (b)
Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359-4362.
(c) Piana, S.; Devillers, I.; Togni, A.; Rothlisberger, U. Angew. Chem., Int.
Ed. 2002, 41, 979-982. (d) Hamashima, Y.; Yagi, K.; Takano, H.; Tamas,
L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530-14531. (e) Ma, J.-
A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007-1011. (f) Shibata,
N.; Ishimura, T.; Nagai, T.; Kohno, J.; Toru, T. Synlett 2004, 1703-1706.
(g) Enders, D.; Huttl, M. R. M. Synlett 2005, 991-993. (h) Bernardi, L.;
Jørgensen, K. A. Chem. Commun. 2005, 1324-1326. (i) Steiner, D. D.;
Mase, N.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2005, 44, 3706-3710.
(j) Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127,
8826-8828. (k) Marigo, M.; Fielenbach, D.; Braunton, A.; Kjærsgaard,
A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703-3706.
(4) For alternative synthesis of enantioenriched â-fluorinated carboxylic
acids not featuring an allylic fluoride, see, for example: (a) Kollonitsch,
J.; Marburg, S.; Perkins, L. M. J. Org. Chem. 1979, 44, 771-777. (b)
Blackburn, G. M.; Rahid, A. J. Chem. Soc., Chem. Commun. 1988, 4, 317-
319. (c) Armone, A.; Cavicchioli, M.; Donadelli, A.; Resnati, G. Tetrahe-
dron: Asymmetry 1994, 5, 1019-1028. (d) Myers, A. G.; Barbay, J. K.;
Zhong, B. J. Am. Chem. Soc. 2001, 123, 7207-7219.
(1) (a) For a recent book on the synthesis, reactivity, and applications
of fluorocompounds, see: Modern Fluoroorganic Chemistry; Kirsch, P.,
Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, 2004. (b) Hiyama,
T.; Shimizu, M. Angew. Chem., Int. Ed. 2005, 44, 214-231.
(2) (a) Differding, E.; Lang, R. W. Tetrahedron Lett. 1988, 29, 6087-
6090. (b) Davis, F. A.; Han, W. Tetrahedron Lett. 1991, 32, 1631-1634.
(c) Davis, F. A.; Zhou, P.; Murphy, C. K.; Sundarababu, G.; Qi, H.; Han,
W.; Przeslawski, R. M.; Chen, B.-C.; Carroll, P. J. J. Org. Chem. 1998,
63, 2273-2280. (d) Takeuchi, Y.; Suzuki, T.; Satoh, A.; Shiragami, T.;
Shibata, N. J. Org. Chem. 1999, 64, 5708-5711. (e) Shibata, N.; Liu, Z.;
Takeuchi, Y. Chem. Pharm. Bull. 2000, 48, 1954-1958. (f) Liu, Z.; Shibata,
N.; Takeuchi, Y. J. Org. Chem. 2000, 65, 7583-7587. (g) Cahard, D.;
Audouard, C.; Plaquevent, J.-C.; Roques, N. Org. Lett. 2000, 2, 3699-
3701. (h) Shibata, N.; Suzuki, E.; Takeuchi, Y. J. Am. Chem. Soc. 2000,
122, 10728-10729. (i) Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am.
Chem. Soc. 2001, 123, 7001-7009.
10.1021/ol0518535 CCC: $30.25
© 2005 American Chemical Society
Published on Web 08/27/2005