ever, required to complete the total synthesis after Stille union
of the macrocyclic precursor and side chain. We, therefore,
sought in a second generation approach a more convergent,
scalable route, comprising an advanced macrocycle, ap-
propriately functionalized for ready attachment of a more
fully elaborated side chain. Success with this venture would
reduce the number of post-Stille coupling steps, and thereby
increase the overall efficiency. In this, the first of two Letters,
we report the successful realization of this goal: a more
effective, convergent, and potentially scalable total synthesis
of (+)-phorboxazole A (1). In the second Letter, we
demonstrate the utility of the second generation approach
with the design and synthesis of a series of potent phorbox-
azole congeners possessing structurally modified side chains,
one of which proved significantly more active than phor-
boxazole A.7
tricyclic fragment 6, which in the forward sense would be
united via a stereoselective Wittig olefination. The requisite
tricycle 6 would be available via a three-step Petasis-Ferrier
union/rearrangement of oxazole aldehyde 8 with â-hydroxy
acid 7, the latter assembled via hetero-Diels-Alder8 and
acetate aldol tactics.9
Construction of macrocycle 4 began with the synthesis of
â-hydroxy acid 7 (Scheme 2). Condensation of known
Scheme 2
From the synthetic perspective, we trace our second
generation approach to the side chain oxazole 3 and a fully
elaborated macrocyclic vinyliodide 4 (Scheme 1).2b,c Discon-
Scheme 1
aldehyde 910 with the Danishefsky diene11 catalyzed by Ti-
(O-i-Pr)4/(R)-Binol furnished the hetero-Diels-Alder8 adduct
(-)-10 in 75% yield, with 92% enantioselectivity. Scandium
triflate-promoted axial delivery of the TMS-thiol enol ether
derived from ethylthioacetate led next to trans-tetrahydro-
pyranone (-)-11 as a single diastereomer in excellent yield.12
Importantly, this reaction was found to be highly reliable
on preparative scales up to 50 g.
Chemoselective olefination of (-)-11 utilizing the Petasis/
Tebbe reagent13 and 10 mol % of ethyl pivalate furnished
thiolester (-)-12 in 76% yield. The ethyl pivalate was
employed to prevent deleterious [2+2] side reactions of Cp2-
Lett. 2001, 3, 1693. (k) Greer, P. B.; Donaldson, W. A. Tetrahedron Lett.
2000, 41, 3801. (l) Greer, P. B.; Donaldson, W. A. Tetrahedron 2002, 58,
6009. (m) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Lett. 2001,
3, 4003. (n) Paterson, I.; Luckhurst, C. A. Tetrahedron Lett. 2003, 44, 3749.
(o) Paterson, I.; Steven, A.; Luckhurst, C. A. Org. Biomol. Chem. 2004, 2,
3026. (p) Lucas, B. S.; Burke, S. D. Org. Lett. 2003, 5, 3915. (q) Lucas, B.
S.; Luther, L. M.; Burke, S. D. Org. Lett. 2004, 6, 2965. (r) Liu, B.; Zhou,
W.-S. Tetrahedron Lett. 2003, 44, 4933. (s) Li, D. R.; Tu, Y. Q.; Lin, G.-
Q.; Zhou, W.-S. Tetrahedron Lett. 2003, 44, 8729.
(5) Smith, A. B., III; Verhoest, P. R.; Minbiole, K. P.; Lim, J. J. Org.
Lett. 1999, 1, 909.
(6) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Beauchamp, T. J.
Org. Lett. 1999, 1, 913.
(7) Smith, A. B., III; Razler, T. M.; Pettit, G. R.; Chapuis, J.-C. Org.
Lett. 2005, following Letter.
(8) Keck, G. E.; Li, X.-Y.; Krishnamurthy, D. J. Org. Chem. 1995, 60,
5998.
nections of 4 in turn at the C(2-3) and C(19-20) olefins
reveal a central tetrahydropyran aldehyde 5 and an eastern
(4) (a) Rychnovsky, S. D.; Hu, Y.; Ellsworth, B. Tetrahedron Lett. 1998,
39, 7271. (b) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217.
(c) Jasti, R.; Vitale, J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2004, 126,
9904. (d) Wolbers, P.; Hoffmann, H. M. R.; Sasse, F. Synlett 1999, 1808.
(e) Wolbers, P.; Misske, A. M.; Hoffmann, H. M. R. Tetrahedron Lett.
1999, 40, 4527. (f) Wolbers, P.; Hoffmann, H. M. R. Synthesis 1999, 797.
(g) Wolbers, P.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905. (h)
Misske, A. M.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 4315. (i) Schaus,
J. V.; Panek, J. S. Org. Lett. 2000, 2, 469. (j) Huang, H.; Panek, J. S. Org.
(9) Nagao, Y.; Yamada, S.; Kumagai, T.; Ochiai, M.; Fujita, E. J. Chem.
Soc., Chem. Commun. 1985, 1418.
(10) Boeckman, R. K., Jr.; Charette, A. B.; Asberom, T.; Johnston, B.
H. J. Am. Chem. Soc. 1987, 109, 7553.
(11) (a) Danishefsky, S. Acc. Chem. Res. 1981, 14, 400. (b) Danishefsky,
S. Chemtracts: Org. Chem. 1989, 2, 273.
(12) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem.
Soc. 2003, 125, 3793.
(13) Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
4400
Org. Lett., Vol. 7, No. 20, 2005