M. K. Uddin et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2854–2857
2857
Table 4. Disubstituted oxyphenisatin derivatives
moderate inhibition (1–2 lM) of CYP2C9 and 2C19
probably due to the presence of the phenol moieties.15
HO
OH
In conclusion, we have used a cell-based screening ap-
proach to assess structure–activity relationships and
identified two low nanomolar compounds with reason-
able physicochemical and in vitro ADME profiles. The
in vivo activity of this compound series has also been
confirmed in appropriate xenograft models.12
R2
5
O
6
N
7
H
R1
Compound
MDA-468
a
IC50 (lM)
MDA-231
a
IC50 (lM)
R1
R2
References and notes
4a
4b
4c
4d
4e
4f
0.037
0.100
0.162
0.160
0.003
0.006
0.089
0.007
0.006
0.009
0.021
0.055
na
na
na
na
na
na
na
na
na
na
na
na
na
na
5-F
5-F
7-F
7-Me
7-Me
7-Me
7-F
1. Yu, K.; Toral-Barza, L.; Discafani, C.; Zhang, W-G.;
Skotnicki, J.; Frost, P.; Gibbons, J. J. Endo-Related
Cancer 2001, 8, 249.
2. (a) Natarajan, A.; Fan, Y.-H.; Chen, H.; Guo, Y.; Iyasere,
J.; Harbinski, F.; Christ, W. J.; Aktas, H.; Halperin, J. A.
J. Med. Chem. 2004, 47, 1882; (b) Natarajan, A.; Guo, Y.;
Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.;
Aktas, H.; Halperin, J. A. J. Med. Chem. 2004, 47, 4979;
(c) Halperin, J. A.; Natarajan, A.; Aktas, H.; Fan, Y.-H.;
Chen, H. WO2005/080335A1.
5-Me
5-OMe
6-F
6-F
6-Br
7-Me
7-Me
7-Me
7-Cl
4g
4h
4i
6-Me
6-Me
6-OMe
6-Cl
4j
7-Me
7-F
4k
4l
Cyclo-
Cyclo-
Pentyl
Hexyl
3. (a) Pearson, A. J.; Grainger, J. M.; Scheuer, P. J.; McIntyre,
N. Lancet 1971, 1, 994; (b) Mallory, A.; Frank, B. W.; Kern,
F., Jr. N. Engl. J. Med. 1971, 285, 1266; Kotha, P.; Rake, M.
O.; Williat, D. Br. J. Med. 1980, 281, 1530.
4m
a Values are means of two experiments (na, not active (>3lM)).
4. Reynolds, T. B.; Peters, R. L.; Yamada, S. N. Engl.
J. Med. 1971, 285, 813.
5. da Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz.
Chem. Soc. 2001, 12, 273.
Interestingly, methylating the amide function (1a) also
resulted in complete loss of antiproliferative activity.
6. (a) Alam, M.; Younas, M.; Zafar, M. A.; Naeem Pak.
J. Sci. Ind. Res. 1989, 32, 246 (CA 112:7313u); (b)
Smolders, R. R.; Waefelaer, A.; Francart, D. Ing. Chim.
(Brussels) 1982, 64, 5 (CA 97:182148n); (c) Loloiu, G.;
Loloiu, T.; Maior, O. Khim. Geterosilk. Soedin. 1998, 396
(Web of Science); (d) Garden, S. J.; Torres, J. C.; Ferriera,
A. A.; Silva, R. B.; Pinto, A. C. Tetrahedron Lett. 1997,
38, 1501.
We then explored the structure antiproliferative rela-
tionship of monosubstituted oxyphenisatin derivatives
carrying different substituents in either the 5-, 6- or 7-po-
sition (see Tables 2 and 3). The oxyphenisatins with a
substituent at the 4-position did not show any relevant
activity.
7. Varma, R. S.; Singh, A. P. Indian J. Chem., Sect. B 1990,
B, 578.
8. Hauser, C. R.; Manyik, R. M. J. Org. Chem. 1953, 18,
588.
9. (a) Taylor, A. J. Chem. Res., Synop. 1980, 347; (b) Rice,
K. C.; Boone, B. J.; Rubin, A. B.; Rauls, T. J. J. Med.
Chem. 1976, 19, 887.
The data indicate that halogens and small lipophilic sub-
stituents in the 6- and 7-position (2b, 2g, 3a, 3b, and 3f)
are important for the antiproliferative activity. Whereas,
larger substituents (3k, 3l, and 3m) or polar substituents
(2m, 3i, 3p and 3q) reduce the potency.
10. (a) Hewawasam, P.; Meanwell, N. Tetrahedron Lett. 1994,
35, 7303; (b) Rivalle, C.; Bisogni, E. J. Heterocycl. Chem.
1997, 34, 441.
11. (a) Garrido, F.; Ibanez, J.; Gonalons, E.; Giraldez, A. Eur.
J. Med. Chem. 1975, 10, 143; (b) Ibanez-Catalan, J.; Forn,
M. P.; Osso, F. J. Ann. Quim. 1976, 72, 571; (c) Song, H.
N.; Lee, H. J.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Synth.
Commun. 1999, 29, 3303; (d) Wexler, H.; Barboiu, V. Rev.
Roum. Chim. 1976, 21, 127 (CA 85 :5447r).
Finally, we evaluated disubstituted oxyphenisatin
derivatives carrying two small and lipophilic substitu-
ents. Table 4 summarizes the results and confirms the
importance of having relatively small and lipophilic sub-
stituents in the 6- and/or 7-position.
The two lead compounds (3f and 4e) were further pro-
filed and both showed acceptable Caco-2 permeability
(19.6 and 43.1 nm/s, respectively) and aqueous solubility
(0.64 and 0.23 mg/mL, respectively, at pH 7.0). They are
both highly bound to serum protein (99% and 98%,
respectively), but show no evidence of P-gp mediated
efflux using Vinblastine as internal control and Verapa-
mil as P-gp inhibitor. Both compounds showed poor
inhibition (>10 lM) of CYP1A2, 2D6 and 3A4, but
´
12. Felding, J.; Pedersen, H. C.; Krog-Jensen, C.; Prætegaard,
M.; Butcher, S. P.; Linde, V.; Coulter, T. S.; Montalbetti,
C.; Uddin, M.; Reignier, S. WO2005/097107A2.
13. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
14. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 50, 4467.
15. Locuson, C. W., II; Suzuki, H.; Rettie, A. E.; Jones, J. P.
J. Med. Chem. 2004, 47, 6768.