M. B. Nielsen et al.
FULL PAPER
(SiO2, CH2Cl2) or recrystallization from hexane. M.p. 101–102 °C.
trans-1-Bromo-4-(4-nitrophenyl)but-1-en-3-yne (trans-23): To a solu-
1H NMR (300 MHz, CDCl3): δ = 6.81 (s, 1 H), 7.63 (d, 8.8 Hz, 2 tion of the dibromide 20 (1.01 g, 3.05 mmol) in diethyl phosphite
H), 8.20 (d, 8.8 Hz, 2 H ppm). 13C NMR (75 MHz, CDCl3): δ = (2.0 mL, 15.5 mmol) was added triethylamine (2.0 mL, 14.4 mmol),
90.9, 94.7, 104.7, 119.0, 123.9, 129.4, 132.4, 147.6 ppm. MS (FAB):
and the dark brown mixture was stirred at 50 °C for 6 h. Diethyl
m/z = 329 [M+]. MS (GC): m/z = 329 [M+]. C10H5Br2NO2 (330.96): ether (50 mL) was added, and the Et3N·HBr was removed by fil-
calcd. C 36.29, H 1.52, N 4.23; found C 36.57, H 1.42, N 4.18.
tration. The filtrate was concentrated in vacuo and the residue sub-
jected to column chromatography (SiO2, cyclohexane/CH2Cl2, 3:2),
which afforded trans-23 (320 mg, 42%) as an off-white solid. Re-
moval of trace amounts of the cis-isomer can be done by recrystalli-
zation from hexane. M.p. 133–135 °C. 1H NMR (300 MHz,
CDCl3): δ = 6.45 (d, 14.1 Hz, 1 H), 6.92 (d, 14.1 Hz, 1 H), 7.57 (d,
9.1 Hz, 2 H), 8.19 (d, 9.1 Hz, 2 H) ppm. 13C NMR (75 MHz,
CDCl3): δ = 89.6, 90.9, 117.0, 121.3, 123.9, 129.7, 132.4, 147.5 ppm.
7-[4,5-Bis(methoxycarbonyl)-1,3-dithiol-2-ylidene]-4-{[4,5-bis(meth-
oxycarbonyl)-1,3-dithiol-2-ylidene]propynyl}-1-[4-nitrophenyl]hept-3-
en-1,5-diyne (21): To a mixture of CuI (5 mg, 0.03 mmol) and
[Pd(PhCN)2Cl2] (30 mg, 0.078 mmol) was added THF (1.0 mL),
toluene (1.0 mL), HN(iPr)2 (0.3 mL), and P(tBu)3 (0.2 mL, 10% in
hexane) under argon. This mixture was transferred via a syringe to
a flask containing the dibromide 20 (162 mg, 0.489 mmol) and 2
(342 mg, 1.33 mmol) under argon. The reaction mixture was sub-
jected to ultrasonification for 2½ h at ca. 25–30 °C. Then it was
filtered through a short plug of silica (SiO2, CH2Cl2). Column
chromatography afforded the product 21 (91 mg, 30%) as a red
powder. M.p. Ͼ 300 °C (decomp.). 1H NMR (300 MHz, CDCl3):
δ = 3.71 (s, 3 H), 3.85 (2×s, 6 H), 3.87 (s, 3 H), 5.59 (s, 1 H), 5.71
(s, 1 H), 6.24 (s, 1 H), 7.62 (d, 9.0 Hz, 2 H), 8.20 (d, 9.0 Hz, 2 H)
ppm. 13C NMR (75 MHz, CDCl3): δ = 53.7, 91.1, 92.5, 92.8, 93.6,
93.9, 96.8, 97.9, 99.5, 116.6, 118.4, 123.8, 130.1, 131.1, 131.4, 131.9,
132.2, 133.1, 147.2, 148.4, 148.8, 159.5, 159.6, 159.8 (× 2) ppm. MS
(FAB): m/z = 681 [M+]. C30H19NO10S4 (681.74): calcd. C 52.85, H
2.81, N 2.05; found C 52.76, H 2.72, N 1.97.
Acknowledgments
The Danish Technical Research Council (STVF, grant # 26-01-
0033), the Danish Natural Science Research Council (SNF, grants
# 21-04-0084 and # 2111-04-0018), Carlsbergfondet, and Direktør
Ib Henriksens Fond are gratefully acknowledged for financial sup-
port. A. S. Andersson thanks The University of Copenhagen for a
PhD scholarship. We thank Flemming Hansen for collection of X-
ray diffraction data.
cis-7-[4,5-Bis(methoxycarbonyl)-1,3-dithiol-2-ylidene]-1-[4-nitro-
phenyl]hept-3-en-1,5-diyne (cis-22): To a solution of the dibromide
20 (331 mg, 1.00 mmol) in toluene (3 mL) was added [Pd(PPh3)4]
(46.2 mg, 0.040 mmol) followed by Bu3SnH (0.30 mL, 1.1 mmol),
and the mixture was stirred at room temp. for 1 h. Then 1
(1.25 mmol) in THF (1 mL) was added, followed by HN(iPr)2
(0.85 mL). The mixture was degassed with argon, whereupon CuI
(57 mg, 0.30 mmol) was added. The mixture was stirred overnight
and filtered through a short plug of silica (SiO2, CH2Cl2). Column
chromatography (SiO2, CH2Cl2) afforded cis-22 (166 mg, 39%) as
a red solid. M.p. 151–153 °C. 1H NMR (300 MHz, CDCl3): δ =
3.72 (s, 3 H), 3.84 (s, 3 H), 5.69 (d, 2.6 Hz, 1 H), 6.04 (d, 10.8 Hz,
1 H), 6.19 (dd, 10.8/2.6 Hz, 1 H), 7.63 (d, 8.8 Hz, 2 H), 8.20 (d,
8.8 Hz, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 53.4, 53.5,
92.6, 93.1, 95.2, 96.0, 98.0, 116.3, 121.0, 123.6, 130.0, 130.9, 131.9,
132.9, 147.0, 147.6, 159.3, 159.7 ppm. MS (FAB): m/z = 427 [M+].
HR-MS (FAB): m/z = 427.0192 [M+] (calcd. for C20H13NO6S2:
427.0184). C20H13NO6S2 (427.45): calcd. C 56.20, H 3.07, N 3.28;
found C 55.80, H 3.01, N 3.02.
[1] a) M. R. Bryce, Adv. Mater. 1999, 11, 11–23; b) M. B. Nielsen,
C. Lomholt, J. Becher, Chem. Soc., Rev. 2000, 29, 153–164; c)
M. R. Bryce, J. Mater. Chem. 2000, 10, 589–598; d) J. L. Seg-
ura, N. Martín, Angew. Chem. 2001, 113, 1416–1455; Angew.
Chem. Int. Ed. 2001, 40, 1372–1409; e) J. O. Jeppesen, J. Becher,
Eur. J. Org. Chem. 2003, 17, 3245–3266.
[2] For a review on linearly extended TTFs, see: J. Roncali, J. Ma-
ter. Chem. 1997, 7, 2307–2321.
[3] a) M. B. Nielsen, N. N. P. Moonen, C. Boudon, J.-P. Gissel-
brecht, P. Seiler, M. Gross, F. Diederich, Chem. Commun. 2001,
1848–1849; b) M. B. Nielsen, N. F. Utesch, N. N. P. Moonen,
C. Boudon, J.-P. Gisselbrecht, S. Concilio, S. P. Piotto, P. Seiler,
P. G ünter, M. Gross, F. Diederich, Chem. Eur. J. 2002, 8, 3601–
3613; c) K. Qvortrup, M. T. Jakobsen, J.-P. Gisselbrecht, C.
Boudon, F. Jensen, S. B. Nielsen, M. B. Nielsen, J. Mater.
Chem. 2004, 14, 1768–1773.
[4] a) R. E. Martin, U. Gubler, C. Boudon, V. Gramlich, C. Bossh-
ard, J.-P. Gisselbrecht, P. Günter, M. Gross, F. Diederich,
Chem. Eur. J. 1997, 3, 1505–1512; b) M. B. Nielsen, M. Schrei-
ber, Y. G. Baek, P. Seiler, S. Lecomte, C. Boudon, R. R. Tyk-
winski, J.-P. Gisselbrecht, V. Gramlich, P. J. Skinner, C. Bossh-
ard, P. Günter, M. Gross, F. Diederich, Chem. Eur. J. 2001, 7,
3263–3280; c) F. Diederich, Chem. Commun. 2001, 219–227; d)
M. B. Nielsen, F. Diederich, Synlett 2002, 544–552; e) M. B.
Nielsen, F. Diederich, Chem. Rec. 2002, 2, 189–198; f) J.-P. Gis-
selbrecht, N. N. P. Moonen, C. Boudon, M. B. Nielsen, F. Di-
ederich, M. Gross, Eur. J. Org. Chem. 2004, 2959–2972; g)
M. B. Nielsen, F. Diederich, Chem. Rev. 2005, 105, 1837–1867.
[5] M. B. Nielsen, F. Diederich, in: Modern Arene Chemistry (Ed.:
D. Astruc), Wiley-VCH, Weinheim, 2002, p. 196–216.
[6] a) C. Bosshard, R. Spreiter, P. Günter, R. R. Tykwinski, M.
Schreiber, F. Diederich, Adv. Mater. 1996, 8, 231–234; b) R.
Spreiter, C. Bosshard, G. Knöpfle, P. Günter, R. R. Tykwinski,
M. Schreiber, F. Diederich, J. Phys. Chem. B. 1998, 102, 29–
32; c) R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich,
C. Bosshard, P. Günter, J. Phys. Chem. B. 1998, 102, 4451–
4465.
trans-7-[4,5-Bis(methoxycarbonyl)-1,3-dithiol-2-ylidene]-1-[4-nitro-
phenyl]hept-3-en-1,5-diyne (trans-22): To a solution of the bromide
trans-23 (252 mg, 1.00 mmol) in toluene (3 mL) was added
[Pd(PPh3)4] (46.2 mg, 0.04 mmol), and the mixture was stirred at
room temp. for 1 h. Then 2 (1.25 mmol) in THF (1 mL) was added,
followed by HN(iPr)2 (606 mg, 6 mmol). The mixture was degassed
with argon, whereupon CuI (57 mg, 0.30 mmol) was added. After
stirring for 3 h at room temp., the mixture was filtered through a
short plug of silica (SiO2, CH2Cl2). Column chromatography (SiO2,
CH2Cl2) afforded trans-22 (287 mg, 67%) as
a red solid.
Recrystallization from MeCN gave the product as red crystals. M.p.
1
115–117 °C. H NMR (300 MHz, CDCl3): δ = 3.85 (s, 3 H), 3.87
(s, 3 H), 5.59 (d, 2.6 Hz, 1 H), 6.16 (d, 15.8 Hz, 1 H), 6.35 (dd,
15.8/2.6 Hz, 1 H), 7.57 (d, 8.8 Hz, 2 H), 8.19 (d, 8.8 Hz, 2 H) ppm.
13C NMR (75 MHz, CDCl3): δ = 53.5 (two signals overlapping),
92.7 (× 2), 93.5, 93.8, 98.6, 118.0, 122.5, 123.7, 129.8, 131.3, 131.5,
132.2, 147.1, 147.3, 159.4, 159.6 ppm. MS (FAB) m/z = 427 [M+].
C20H13NO6S2 (427.45): calcd. C 56.20, H 3.07, N 3.28; found C
55.96, H 2.72, N 3.13.
[7] Parts of the work were published as preliminary communica-
tions: a) M. B. Nielsen, J.-P. Gisselbrecht, N. Thorup, S. P. Pi-
otto, C. Boudon, M. Gross, Tetrahedron Lett. 2003, 44, 6721–
6723; b) K. Qvortrup, A. S. Andersson, J.-P. Mayer, A. S.
Jepsen, M. B. Nielsen, Synlett 2004, 2818–2820.
3670
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 3660–3671