6630 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 21
Georgsson et al.
(14) Samanen, J. M.; Peishoff, C. E.; Keenan, R. M.; Weinstock, J.
Refinement of a Molecular-Model of Angiotensin-II (AII) Em-
ployed in the Discovery of Potent Nonpeptide Antagonists.
Bioorg. Med. Chem. Lett. 1993, 3, 909-914.
(15) Nikiforovich, G. V.; Kao, J. L. F.; Plucinska, K.; Zhang, W. J.;
Marshall, G. R. Conformational Analysis of Two Cyclic Analogs
of Angiotensin: Implications for the Biologically Active Confor-
mation. Biochemistry 1994, 33, 3591-3598.
(16) Boucard, A. A.; Wilkes, B. C.; Laporte, S. A.; Escher, E.;
Guillemette, G.; Leduc, R. Photolabeling Identifies Position 172
of the Human AT1 Receptor as a Ligand Contact Point: Recep-
tor-Bound Angiotensin II Adopts an Extended Structure. Bio-
chemistry 2000, 39, 9662-9670.
(17) Matsoukas, J. M.; Polevaya, L.; Ancans, J.; Mavromoustakos,
T.; Kolocouris, A.; Roumelioti, P.; Vlahakos, D. V.; Yamdagni,
R.; Wu, Q.; Moore, G. J. The Design and Synthesis of a Potent
Angiotensin II Cyclic Analogue Confirms the Ring Cluster
Receptor Conformation of the Hormone Angiotensin II. Bioorg.
Med. Chem. 2000, 8, 1-10.
(18) Plucinska, K.; Kataoka, T.; Yodo, M.; Cody, W. L.; He, J. X.;
Humblet, C.; Lu, G. H.; Lunney, E.; Major, T. C.; et al. Multiple
Binding Modes for the Receptor-Bound Conformations of Cyclic
AII Agonists. J. Med. Chem. 1993, 36, 1902-1913.
(19) Printz, M. P.; Nemethy, G.; Bleich, H. Proposed Models for
Angiotensin II in Aqueous Solution and Conclusions about
Receptor Topography. Nature (London) 1972, 237, 135-
140.
(20) Spear, K. L.; Brown, M. S.; Reinhard, E. J.; McMahon, E. G.;
Olins, G. M.; Palomo, M. A.; Patton, D. R. Conformational
Restriction of Angiotensin II: Cyclic Analogs Having High
Potency. J. Med. Chem. 1990, 33, 1935-1940.
(21) Schmidt, B.; Lindman, S.; Tong, W.; Lindeberg, G.; Gogoll, A.;
Lai, Z.; Thoernwall, M.; Synnergren, B.; Nilsson, A.; Welch, C.
J.; Sohtell, M.; Westerlund, C.; Nyberg, F.; Karle´n, A.; Hallberg,
A. Design, Synthesis, and Biological Activities of Four Angio-
tensin II Receptor Ligands with γ-Turn Mimetics Replacing
Amino Acid Residues 3-5. J. Med. Chem. 1997, 40, 903-
919.
(22) Deraet, M.; Rihakova, L.; Boucard, A.; Perodin, J.; Sauve, S.;
Mathieu, A. P.; Guillemette, G.; Leduc, R.; Lavigne, P.; Escher,
E. Angiotensin II Is Bound to Both Receptors AT1 and AT2,
Parallel to the Transmembrane Domains and in an Extended
Form. Can. J. Physiol. Pharmacol. 2002, 80, 418-425.
(23) Rosenstro¨m, U.; Sko¨ld, C.; Lindeberg, G.; Botros, M.; Nyberg,
F.; Karle´n, A.; Hallberg, A. A Selective AT2 Receptor Ligand
with a γ-Turn-like Mimetic Replacing the Amino Acid Residues
4-5 of Angiotensin II. J. Med. Chem. 2004, 47, 859-
870.
(24) Rosenstro¨m, U.; Sko¨ld, C.; Plouffe, B.; Lindeberg, G.; Botros, M.;
Nyberg, F.; Wolf, G.; Karle´n, A.; Gallo-Payet, N.; Hallberg, A.
New Selective AT2 Receptor Ligands Encompassing a γ-Turn
Mimetic Replacing the Amino Acid Residues 4-5 of Angiotensin
II Act as Agonists. J. Med. Chem. 2005, 48, 4009-4024.
(25) Lindman, S.; Lindeberg, G.; Fra¨ndberg, P.-A.; Nyberg, F.; Karle´n,
A.; Hallberg, A. Effect of 3-5 Monocyclizations of Angiotensin
II and 4-AminoPhe6-Ang II on AT2 Receptor Affinity. Bioorg.
Med. Chem. 2003, 11, 2947-2954.
(26) Lindman, S.; Lindeberg, G.; Gogoll, A.; Nyberg, F.; Karle´n, A.;
Hallberg, A. Synthesis, Receptor Binding Affinities and Confor-
mational Properties of Cyclic Methylenedithioether Analogues
of Angiotensin II. Bioorg. Med. Chem. 2001, 9, 763-
772.
(27) Lindman, S.; Lindeberg, G.; Nyberg, F.; Karle´n, A.; Hallberg,
A. Comparison of Three γ-Turn Mimetic Scaffolds Incorporated
into Angiotensin II. Bioorg. Med. Chem. 2000, 8, 2375-
2383.
(28) Olah, G. A.; Overchuk, N. A. Aromatic Substitution. XXV.
Selectivity in the Friedel-Crafts Benzylation, Isopropylation,
and tert-Butylation of Benzene and Toluene. J. Am. Chem. Soc.
1965, 87, 5786-5788.
(29) Babiak, K. A.; Carpenter, A.; Chou, S.; Colson, P.-J.; Farid, P.;
Hett, R.; Huber, C. H.; Koeller, K. J.; Lawson, J. P.; Li, J.; Mar,
E. K.; Miller, L. M.; Orlovski, V.; Peterson, J. C.; Pozzo, M. J.;
Przybyla, C. A.; Tremont, S. J.; Trivedi, J. S.; Wagner, G. M.;
Weisenburger, G. A.; Zhi, B. PCT Int. Appl. 2001068637,
2001.
(30) Waterlot, C.; Couturier, D.; De Backer, M.; Rigo, B. A Study of
Hydrogenation of Benzhydrols in the Presence of Catalytic
Amount of Triflic Acid. Can. J. Chem. 2000, 78, 1242-
1246.
(31) Olah, G. A.; Arvanaghi, M.; Ohannesian, L. Synthetic Methods
and Reactions. 126. Trifluoromethanesulfonic Acid/Triethylsi-
lane: A New Ionic Hydrogenation Reagent for the Reduction of
Diaryl and Alkyl Aryl Ketones to Hydrocarbons. Synthesis, 1986,
770-772.
(32) Georgsson, J.; Hallberg, A.; Larhed, M. Rapid Palladium-
Catalyzed Synthesis of Esters from Aryl Halides Utilizing Mo-
(CO)6 as a Solid Carbon Monoxide Source. J. Comb. Chem 2003,
5, 350-352.
(33) Alterman, M.; Hallberg, A. Fast Microwave-Assisted Preparation
of Aryl and Vinyl Nitriles and the Corresponding Tetrazoles from
Organo-halides. J. Org. Chem. 2000, 65, 7984-7989.
(34) Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.; Pipik,
B.; King, S.; Verhoeven, T. R. An Improved Procedure for
Aromatic Cyanation. Synth. Commun. 1994, 24, 887-
890.
(35) Sundermeier, M.; Zapf, A.; Beller, M. A Convenient Procedure
for the Palladium-Catalyzed Cyanation of Aryl Halides. Angew.
Chem., Int. Ed. 2003, 42, 1661-1664.
(36) Neustadt, B. R.; Smith, E. M.; Nechuta, T.; Zhang, Y. Combi-
natorial Libraries Based on a Novel and Readily Accessible
“Centroid” Scaffold. Tetrahedron Lett. 1998, 39, 5317-
5320.
(37) McOmie, J. F. W.; Watts, M. L.; West, D. E. Demethylation of
Aryl Methyl Ethers by Boron Tribromide. Tetrahedron, 1968,
24, 2289-2292.
(38) Mueller, L. PE-COSY, a Simple Alternative to E-COSY. J. Magn.
Reson. 1987, 72, 191-196.
(39) Braunschweiler, L.; Ernst, R. R. Coherence transfer by isotropic
mixing: application to proton correlation spectroscopy. J. Magn.
Reson. 1983, 53, 521-528.
(40) Bax, A.; Davis, D. G. Practical aspects of two-dimensional
transverse NOE spectroscopy. J. Magn. Reson. 1985, 63, 207-
213.
(41) Smallcombe, S. H.; Patt, S. L.; Keifer, P. A. WET solvent
suppression and its applications to LC NMR and high-resolution
NMR spectroscopy. J. Magn. Reson. 1995, 117, 295-303.
(42) Dudley, D. T.; Panek, R. L.; Major, T. C.; Lu, G. H.; Bruns, R.
F.; Klinkefus, B. A.; Hodges, J. C.; Weishaar, R. E. Subclasses
of Angiotensin II Binding Sites and Their Functional Signifi-
cance. Mol. Pharmacol. 1990, 38, 370-377.
(43) Nielsen, A. H.; Schauser, K.; Winther, H.; Dantzer, V.; Poulsen,
K. Angiotensin II Receptors and Renin in the Porcine Uterus:
Myometrial AT2 and Endometrial AT1 Receptors Are Down-
Regulated during Gestation. Clin. Exp. Pharmacol. Physiol.
1997, 24, 309-314.
(44) Buisson, B.; Bottari, S. P.; de Gasparo, M.; Gallo-Payet, N.;
Payet, M. D. The Angiotensin AT2 Receptor Modulates T-Type
Calcium Current in Non-Differentiated NG108-15 Cells. FEBS
Lett. 1992, 309, 161-164.
(45) Laflamme, L.; Gasparo, M.; Gallo, J. M.; Payet, M. D.; Gallo-
Payet, N. Angiotensin II Induction of Neurite Outgrowth by AT2
Receptors in NG108-15 Cells. Effect Counteracted by the AT1
Receptors. J. Biol. Chem. 1996, 271, 22729-22735.
(46) Pendleton, R. G.; Gessner, G.; Horner, E. Studies on Inhibition
of Angiotensin II Receptors in Rabbit Adrenal and Aorta. J.
Pharmacol. Exp. Ther. 1989, 248, 637-643.
(47) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
).
(48) Martin, Y. C.; Bures, M. G.; Danaher, E. A.; DeLazzer, J.; Lico,
I.; Pavlik, P. A. A Fast New Approach to Pharmacophore
Mapping and Its Application to Dopaminergic and Benzodiaz-
epine Agonists. J. Comput.-Aided Mol. Des. 1993, 7, 83-
102.
(49) Huckle, W. R.; Kivlighn, S. D.; Zingaro, G. J.; Kevin, N.; Rivero,
R. A.; Chang, R. S.; Greenlee, W. J.; Siegl, P. K. S.; Johnson, R.
G. Angiotensin II Receptor-Mediated Activation of Phospho-
inositide Hydrolysis and Elevation of Mean Arterial Pressure
by Nonpeptide, L-163,491. Can. J. Physiol. Pharmacol. 1994,
72 (Suppl. 1), 543.
(50) Wan, Y.; Wallinder, C.; Plouffe, B.; Beaudry, H.; Mahalingam,
A. K.; Wu, X.; Johansson, B.; Holm, M.; Botoros, M.; Karle´n, A.;
Pettersson, A.; Nyberg, F.; Fa¨ndriks, L.; Gallo-Payet, N.; Hall-
berg, A.; Alterman, M. Design, Synthesis, and Biological Evalu-
ation of the First Selective Nonpeptide AT2 Receptor Agonist.
J. Med. Chem. 2004, 47, 5995-6008.
(51) Kivlighn, S. D.; Huckle, W. R.; Zingaro, G. J.; Rivero, R. A.; Lotti,
V. J.; Chang, R. S. L.; Schorn, T. W.; Kevin, N.; Johnson, R. G.,
Jr. Discovery of L-162,313: a Nonpeptide that Mimics the
Biological Actions of Angiotensin II. Am. J. Physiol. 1995, 268,
R820-R823.
(52) Miura, S.-I.; Karnik, S. S. Angiotensin II Type 1 and Type 2
Receptors Bind Angiotensin II through Different Types of
Epitope Recognition. J. Hypertens. 1999, 17, 397-404.
(53) Rosenstro¨m, U.; Sko¨ld, C.; Lindeberg, G.; Botros, M.; Nyberg,
F.; Hallberg, A.; Karle´n, A. Synthesis and AT2 Receptor-binding
Properties of Angiotensin II Analogues. J. Pept. Res. 2004, 64,
194-201.