15 K. Fukase, A. Hasuoka, I. Kinoshita, Y. Aoki and S. Kusumoto,
Tetrahedron, 1995, 51, 4923.
16 (a) C. A. A. van Boeckel, T. Beetz and S. F. van Aelst, Tetrahedron,
1984, 40, 4097; (b) C. A. A. van Boeckel, T. Beetz, A. C. Kock-van
Dalen and H. van Bekkum, Recl. Trav. Chim. Pays-Bas, 1997, 106,
596.
17 We have previously shown that armed, but not disarmed, thio-
glycosides can be activated with molecular iodine: K. P. R.
Kartha, M. Aloui and R. A. Field, Tetrahedron Lett., 1996, 37,
5175.
Notes and references
1 A. Varki, Glycobiology, 1993, 3, 97 and citations therein.
2 (a) Best Synthetic Methods: Carbohydrates, ed. H. M. I. Osborn,
Academic Press, London, 2003; (b) T. Kanemitsu and O. Kanie,
Comb. Chem. High Throughput Screening, 2002, 5, 339; (c) S. N.
Baytas and R. J. Linhardt, Mini-Rev. Org. Chem., 2004, 1, 27.
3 O. Kanie, Y. Ito and T. Ogawa, J. Am. Chem. Soc, 1994, 116, 12073.
4 D. K. Baeschlin, L. G. Green, M. G. Hahn, B. Hinzen, S. J. Ince and
S. V. Ley, Tetrahedron: Asymmetry, 2000, 11, 173.
5 (a) B. Fraser-Reid, U. E. Udodong, Z. F. Wu, H. Ottosson, J. R.
Merritt, C. S. Rao, C. Roberts and R. Madsen, SYNLETT, 1992,
927; (b) G. H. Veeneman and J. H. van Boom, Tetrahedron Lett.,
1990, 31, 275.
6 (a) X. S. Ye and C.-H. Wong, J. Org. Chem., 2000, 65, 2410; reviewed
in; P. Sears and C.-H. Wong, Science, 2001, 291, 2344.
7 (a) O. J. Plante, E. R. Palmacci and P. H. Seeberger, Science, 2001, 291,
1523; (b) Solid Support Oligosaccharide Synthesis and Combinatorial
Carbohydrate Libraries, ed. P. H. Seeberger, Wiley-Interscience, New
York, 2001.
8 D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F.
Jensen and P. H. Seeberger, Chem. Commun., 2005, 578.
9 (a) O. Kanie, F. Barresi, Y. L. Ding, J. Labbe, A. Otter, L. S. Forsberg,
B. Ernst and O. Hindsgaul, Angew. Chem., Int. Ed., 1996, 34, 2720;
(b) Y. L. Ding, J. Labbe, O. Kanie and O. Hindsgaul, Bioorg. Med.
Chem., 1996, 4, 683; (c) B. Yu, B. Li, G. W. Xing and Y. Z. Hui, J. Org.
Chem., 2001, 3, 404.
18 Other armed glycosyl donors (glycosyl bromides and glycosyl-
trichloroacetimidates) were investigated in on-plate reactions but
glycosylation products were not identifiable; only hemiacetal arising
from quenched donor were obtained.
19 Typical procedure for glycosylation on a TLC plate: a solution
of donor (0.12 lmol) and acceptor (0.10 lmol) in DCM (10 lL)
was spotted (1 lL) on a pre-dried TLC plate using a micro-pipette
(alumina plates were heated at 200 ◦C for 2 h and allowed to cool
over P2O5 in a desiccator prior to use). The plate was placed in the
main chamber of the apparatus (see the electronic supplementary
information) and dried over P2O5 under reduced pressure for 1 h.
Then iodine vapour was introduced by heating solid iodine kept
in the adjacent flask. The TLC plate was kept exposed to iodine
vapour for 30–60 min (Table 1). After the reaction, the TLC plate
was kept under vacuum for 30 min to remove iodine vapour and it was
developed by using a suitable solvent system (e.g. n-hexane–EtOAc
2 : 1). Compounds were identified under UV-light, a relevant band of
silica was scratched from the plate, triturated with CH2Cl2–MeOH
(1 : 1) and filtered through Celite. The filtrate was evaporated and
material obtained was used directly for NMR and mass spectrometry
analysis.
20 K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara and T. Ogawa,
Carbohydr. Res., 1987, 163, 189.
21 H. M. Zuurmond, P. A. M. van der Klein, P. H. van der Meer, G. A.
van der Marel and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 1992,
111, 365.
22 It did not immediately prove possible for this particular experiment
to obtain convincing NMR data from this scale of experiment, hence
the anomeric stereochemistry of compound 4 was not confirmed. It
is well established that the presence of inorganic solids can have a
profound impact on the stereochemistry of trehalose formation—
see: A. H. Haines, Carbohydr. Res., 2003, 338, 813 and references
cited therein.
23 A change to use of more lipophilic protecting groups offers scope
for substantial changes in chromatographic properties: U. J. Nilsson,
E. J. L. Fournier and O. Hindsgaul, Bioorg. Med. Chem., 1998, 6,
1563.
10 Iodine, a versatile reagent in carbohydrate chemistry XVIII. For
part XVII see: R. M. van Well, K. P. R. Kartha and R. A. Field,
J. Carbohydr. Chem., 2005 in press.
11 K. P. R. Kartha, T. S. Ka¨rkka¨inen, S. J. Marsh and R. A. Field,
SYNLETT, 2001, 260.
12 For instance: (a) the exploitation of microwave irradiation in the
synthesis of sulfonamides on TLC plates: L. Williams, Chem.
Commun., 2000, 435; (b) the use of cellulose chromatography paper
as a novel non-covalent support for synthesis and in situ purification
of multi-dimensional arrays: S. E. Shanahan, D. D. Byrne, G. G. A.
Inglis, M. Alam and S. J. F. Macdonald, Chem. Commun., 2002, 2554;
(c) solid-phase synthesis of unprotected N-glycopeptide building
blocks for SPOT synthesis: L. Jobron and G. Hummel, Angew. Chem.,
Int. Ed., 2000, 39, 1621; (d) microwave-accelerated SPOT-synthesis of
spatially addressable libraries on cellulose supports: M. D. Bowman,
R. C. Jeske and H. E. Blackwell, Org. Lett., 2004, 6, 2019.
13 (a) G. V. Reddy, V. R. Kulkarni and H. B. Mereyala, Tetrahedron Lett.,
1989, 30, 4283; (b) H. B. Mereyala and G. V. Reddy, Tetrahedron,
1991, 47, 6435.
14 K. C. Nicolaou, M. E. Duggan and C. K. Hwang, J. Am. Chem. Soc.,
1986, 108, 2468.
24 H. Paulsen, Angew. Chem., Int. Ed. Engl., 1982, 21, 155.
3 4 7 0
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 4 6 8 – 3 4 7 0