2304
P. Kwiatkowski et al.
LETTER
(17) Yamamoto, Y.; Maruyama, K.; Matsumoto, K. J. Chem.
Future work will focus on the application of this catalytic
system to other reactions as well as on further attempts at
modification of the substituents at the 3-position of the
salicylidene moiety, aimed at further improving the enan-
tioselectivity.
Soc., Chem. Commun. 1983, 489.
(18) (a) Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T.
Tetrahedron Lett. 1990, 31, 7345. (b) Hosoya, N.; Irie, R.;
Katsuki, T. Synlett 1993, 261.
(19) (a) Sasaki, T.; Irie, R.; Hamada, T.; Suzuki, K.; Katsuki, T.
Tetrahedron 1994, 50, 11827. (b) Ito, Y. N.; Katsuki, T.
Bull. Chem. Soc. Jpn. 1999, 72, 603.
References
(20) Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296.
(21) Pietikäinen, P. Tetrahedron 2000, 56, 417.
(1) (a) Larrow, J. F.; Jacobsen, E. N. Top. Organomet. Chem.
2004, 6, 123. (b) Cozzi, P. G. Chem. Soc. Rev. 2004, 33,
410.
(2) Martínez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E.
N. J. Am. Chem. Soc. 1995, 117, 5897.
(3) (a) Schaus, S. E.; Brånalt, J.; Jacobsen, E. N. J. Org. Chem.
1998, 63, 403. (b) Huang, Y.; Iwama, T.; Rawal, V. H. J.
Am. Chem. Soc. 2000, 122, 784.
(4) Leighton, J. L.; Jacobsen, E. N. J. Org. Chem. 1996, 61, 389.
(5) McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105,
1563.
(22) (a) Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.;
Terenghi, G. J. Chem. Soc., Perkin Trans. 1 1980, 1862.
(b) Deng, L.; Jacobsen, E. N. J. Org. Chem. 1992, 57, 4320.
(23) Larrow, J. F.; Jacobsen, E. N. J. Org. Chem. 1994, 59, 1939.
(24) Analytical data for the modified salen ligand (1R,2R)-7: mp
89–93 °C; [a]D29 –329.5 (c 1.0, CHCl3); IR (KBr): 2963,
2875, 1628, 1597, 1445, 1263, 699 cm–1; 1H NMR (200
MHz, CDCl3): d = 13.13 (s, OH, 2 H), 8.00 (s, CHN, 2 H),
7.45 (d, J = 1.8 Hz, 2 H), 7.25–7.09 (m, 10 H), 6.92 (d, J =
1.8 Hz, 2 H), 3.13–2.99 (m, 2 H), 2.50–2.25 (m, 4 H), 2.12–
1.94 (m, 4 H), 1.86–1.69 (m, 4 H), 1.66–1.44 (m, 2 H), 1.30
(s, 18 H), 0.60 (t, J = 7.2 Hz, 6 H), 0.53 (t, J = 7.2 Hz, 6 H);
13C NMR (50 MHz, CDCl3): d = 165.5 (2 × CHN), 157.5
(2 × C), 148.5 (2 × C), 139.2 (2 × C), 133.1 (2 × C), 129.2
(2 × CH), 127.2 (4 × CH), 127.0 (4 × CH), 125.8 (2 × CH),
124.7 (2 × CH), 117.5 (2 × C), 72.3 (2 × CH), 49.0 (2 × C),
34.0 (2 × C), 32.9 (2 × CH2), 31.5 (6 × CH3), 28.0 (2 × CH2),
27.1 (2 × CH2), 24.3 (2 × CH2), 8.7 (4 × CH3); Anal. Calcd
for C50H66N2O2: C, 82.60; H, 9.15; N, 3.85. Found: C, 82.55;
H, 9.23; N, 3.83; HRMS: [M + Na]+ calcd for
(6) Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127,
62.
(7) (a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-
Ronchi, A. Angew. Chem. Int. Ed. 1999, 38, 3357.
(b) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Angew.
Chem. Int. Ed. 2000, 39, 2327. (c) Bandini, M.; Cozzi, P.
G.; Umani-Ronchi, A. Tetrahedron 2001, 57, 835.
(d) Berkessel, A.; Menche, D.; Sklorz, C. A.; Schröder, M.;
Paterson, I. Angew. Chem. Int. Ed. 2003, 42, 1032.
(8) For a review of applications of(salen)Cr complexes in
asymmetric catalysis see: Bandini, M.; Cozzi, P. G.; Umani-
Ronchi, A. Chem. Commun. 2002, 919.
(9) For a recent review on enantioselective allylation, see:
Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763.
(10) (a) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.;
Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001.
(b) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem.
Soc. 1993, 115, 8467.
(11) (a) Bedeschi, P.; Casolari, S.; Costa, A. L.; Tagliavini, E.;
Umani-Ronchi, A. Tetrahedron Lett. 1995, 36, 7897.
(b) Casolari, S.; Cozzi, P. G.; Orioli, P. A.; Tagliavini, E.;
Umani-Ronchi, A. Chem. Commun. 1997, 2123.
(c) Hanawa, H.; Kii, S.; Asao, N.; Maruoka, K. Tetrahedron
Lett. 2000, 41, 5543.
(12) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H.
J. Am. Chem. Soc. 1996, 118, 4723.
(13) Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561.
(14) Kwiatkowski, P.; Jurczak, J. Synlett 2005, 227.
(15) Kwiatkowski, P.; Chaladaj, W.; Jurczak, J. Tetrahedron
Lett. 2004, 45, 5343.
C50H66N2O2Na: 749.5022, found: 749.5021.
(25) Analytical data for the complex (1R,2R)-8: [a]D29 –1420
(c 0.01, CHCl3); IR (KBr): 3429, 2961, 2873, 1622, 1533,
1437, 1258, 700, 546 cm–1; HRMS: [M – Cl]+ calcd for
C50H64N2O2Cr: 776.4373, found: 776.4392.
(26) General Procedure for High-Pressure Allylation: In a
2-mL Teflon ampoule were placed catalyst 1g (8.7 mg, 1
mol%), CH2Cl2 (ca. 1 mL), followed by aldehyde (1 mmol)
and allyltributyltin (1.1–1.2 equiv). Finally, the ampoule
was filled with CH2Cl2, closed and placed in a high-pressure
vessel, and the pressure was slowly increased to 10 kbar at
20 °C. After the pressure had stabilized, the reaction mixture
was kept under these conditions for 24 h. After
decompression, the reaction mixture was diluted with wet
Et2O and dried over MgSO4. After evaporation of solvents,
the residue was chromatographed on a silica gel column
(hexane–EtOAc).
(27) The enantioselectivity of homoallylic alcohols 3a–f was
determined by GC employing a capillary chiral b-dex 120
column. Alcohol 3f was analyzed directly, 3a, 3c and 3d as
their O-trimethylsilyl derivatives, 3b as an acetate and 3e as
a trifluoroacetate.
(16) (a) High Pressure Chemistry; Eldik, R.; Klarner, F.-G., Eds.;
Wiley: New York, 2002. (b) Chemistry under Extreme or
Non-Clasical Conditions; van Eldik, R.; Hubbard, C. D.,
Eds.; Wiley: New York, 1997. (c) Organic Synthesis at
High Pressure; Matsumato, K.; Acheson, R. M., Eds.;
Wiley: New York, 1991. (d) High Pressure Chemical
Synthesis; Jurczak, J.; Baranowski, B., Eds.; Elsevier: New
York, 1989.
Synlett 2005, No. 15, 2301–2304 © Thieme Stuttgart · New York