C O M M U N I C A T I O N S
nanosphere is dependent on the thickness of the fullerene-tetrayne
film and its dewetting from the substrate. However, we believe
that the low degree of polymerization could be a principal reason
for the formation of such uniform nanosphere arrays on the surface
because no similar spherical nanoparticles were formed when solid
films of tetrayne 5 were thermally polymerized under the same
experimental conditions.
To our knowledge, this is the first preparation of evenly
distributed and uniform-sized fullerene-containing polymer nano-
spheres via thermally induced solid-state polymerization. In com-
parison to the previous work on fullerene-based nanoaggregates,6a,b,f
the transformation from amorphous solid thin films to orderly
structured nanosphere arrays is indeed remarkable and exceptional.
This method is rather simple, reproducible, and could be useful in
manufacturing various oligomer/polymer-based nanodevices.
Figure 1. UV-vis spectra for compound 6: (a) solid film on quartz without
heating; (b) solid film after thermal annealing at 135 °C for 30 min; (c)
solid film after thermal annealing at 160 °C for 1 h; and (d) in toluene at
room temperature.
Acknowledgment. The authors thank NSERC Canada, the
Canadian Foundation for Innovation, and Memorial University of
Newfoundland for financial support. Prof. D. W. Thompson is
acknowledged for assistance in UV-vis spectroscopic analysis.
Supporting Information Available: Synthetic procedures, 1H and
13C NMR spectra for compounds 2-6, MALDI-TOF mass spectrum,
and detailed DSC, IR, and AFM analyses for 6. This material is
References
(1) For recent examples of fullerene-conjugated oligomer hybrids, see: (a)
Zhao, Y.; Shirai, Y.; Slepkov, A. D.; Cheng, L.; Alemany, L. B.; Sasaki,
T.; Hegmann, F. A.; Tour, J. M. Chem.sEur. J. 2005, 11, 3643-3658.
(b) Vail, S. A.; Krawczuk, P. J.; Guldi, D. M.; Palkar, A.; Echegoyen, L.;
Tome´, J. P. C.; Fazio, M. A.; Schuster, D. I. Chem.sEur. J. 2005, 11,
3375-3388. (c) Atienza, C.; Insuasty, B.; Seoane, C.; Mart´ın, N.; Ramey,
J.; Aminur Rahman, G. M. A.; Guldi, D. M. J. Mater. Chem. 2005, 15,
124-132. (d) Nierengarten, J.-F.; Gu, T.; Hadziioannou, G.; Tsamouras,
D.; Krasnikov, V. HelV. Chim. Acta 2004, 87, 2948-2966.
(2) Roncali, J. Chem. Soc. ReV. 2005, 34, 483-495.
Figure 2. AFM images (5 µm × 5 µm) and corresponding line scans of
the thin films of 6: (a) before thermal annealing, and (b) after thermal
annealing at 160 °C for 1 h. White lines indicate where the sections were
taken.
phenylacetylene groups. A broad, weak absorption tail ranging from
480 to 600 nm is observed, arising from the contribution of fullerene
groups. Solid films of 6 were prepared by drop-casting a toluene
solution onto a quartz slide, and UV-vis spectra were measured
before and after being heated at different temperatures. The UV-
vis spectrum of the film after thermal annealing at 135 °C for 30
min shows no significant changes in comparison to the original
film. After heating the film at 160 °C for 1 h, marked distinctions
in UV-vis absorption were observed; the three characteristic bands
due to the tetrayne unit disappeared completely, while the higher-
energy bands below 300 nm and the fullerene absorption tail were
barely altered. These results indicate that intermolecular reactions
have been limited to the tetrayne moieties.
Finally, the thermally induced polymerization process was
examined by atomic force microscopy (AFM). A dilute solution
of 6 in toluene (ca. 10-4 to 10-5 M) was cast on a freshly cleaved
mica surface to afford a thin film. The film was initially disordered
and amorphous with regions made up of single to several molecular
layers, as illustrated in Figure 2a. After thermal annealing of the
same film at 160 °C for 1 h, the surface shows strikingly different
morphology with highly uniform and ordered nanospheres 15-20
nm high, as seen in Figure 2b. Larger images (up to 90 µm × 90
µm) from different areas of the sample showed similar features,
indicating the formation of homogeneously dispersed nanospheres
over a relatively large scale.
(3) (a) Kuang, L.; Chen, Q.; Sargent, E. H.; Wang, Z. Y. J. Am. Chem. Soc.
2003, 125, 13648-13649. (b) Brusatin, G.; Signorini, R. J. Mater. Chem.
2002, 12, 1964-1977. (c) Dai, L. J. Macromol. Sci., Part C 1999, 39,
273-387.
(4) (a) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992,
258, 1474-1476. (b) Ramos, A. M.; Rispens, M. T.; van Duren, J. K. J.;
Hummelen, J. C.; Janssen, R. A. J. J. Am. Chem. Soc. 2001, 123, 6714-
6715.
(5) Chen, Q.; Kuang, L.; Wang, Z. Y.; Sargent, E. H. Nano Lett. 2004, 4,
1673-1675.
(6) (a) Guldi, D. M.; Zerbetto, F.; Georgakilas, V.; Prato, M. Acc. Chem.
Res. 2005, 38, 38-43. (b) Hoppe, H.; Niggemann, M.; Winder, C.; Kraut,
J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. AdV. Funct.
Mater. 2004, 14, 1005-1011. (c) Veinot, J. G. C.; Yan, H.; Smith, S.
M.; Cui, J.; Huang, Q.; Marks, T. J. Nano Lett. 2002, 2, 333-335. (d)
Mehta, A.; Kumar, P.; Dadmun, M. D.; Zheng, J.; Dickson, R. M.;
Thundat, T.; Sumpter, B. G.; Barnes, M. D. Nano Lett. 2003, 3, 603-
607. (e) Zhang, P.; Li, J.; Liu, D.; Qin, Y.; Guo, Z.-X.; Zhu, D. Langmuir
2004, 20, 1466-1472. (f) Cassell, A. M.; Asplund, C. L.; Tour, J. M.
Angew. Chem., Int. Ed. 1999, 38, 2403-2405. (g) Nishimura, T.; Takatani,
K.; Sakurai, S.; Maeda, K.; Yashima, E. Angew. Chem., Int. Ed. 2002,
41, 3602-3604.
(7) (a) Ding, L.; Olesik, S. V. Chem. Mater. 2005, 17, 2353-2360. (b) Ding,
L.; Olesik, S. V. Nano Lett. 2004, 4, 2271-2276.
(8) Curtis, S. M.; Le, N.; Nguyen, T.; Ouyang, X.; Tran, T.; Fowler, F. W.;
Lauher, J. W. Supramol. Chem. 2005, 17, 31-36 and references therein.
(9) Hetzer, M.; Clausen-Schaumann, H.; Bayerl, S.; Bayerl, T. M.; Camps,
X.; Vostrowsky, O.; Hirsh, A. Angew. Chem., Int. Ed. 1999, 38, 1962-
1965.
(10) Hay, A. S. J. Org. Chem, 1962, 27, 3320-3321.
(11) (a) Shirai, Y.; Zhao, Y.; Cheng, L.; Tour, J. M. Org. Lett. 2004, 6, 2129-
2132. (b) Caution must be taken when handling polyynes since they are
very reactive in the solid state at elevated temperature or upon irradiation.
(12) (a) Enkelmann, V. In AdVances in Polymer Science; Springer-Verlag:
Berlin, Heidelberg, 1984; Vol. 63, pp 91-136. (b) Baughman, R. H.; Yee,
K. C. J. Polym. Sci.: Macromol. ReV. 1978, 13, 219-239.
In some regions, arrays of larger-sized nanospheres (ca. 120 nm
in height) were observed, as well. It is likely that the size of the
JA054669N
9
J. AM. CHEM. SOC. VOL. 127, NO. 41, 2005 14155