5
7. Shi, L.; Liu, Z.; Dong, G.; Duan, L.; Qiu, Y.; Jia, J.; Guo,W.;
Zhao, D.; Cui, D.; Tao, X. Chem-Eur. J. 2012, 18, 8092-8099.
8. Hua,W.; Liu, Z.; Duan,L.; Dong, G.; Qiu, Y.; Zhang, B.; Cui, D.;
Tao, X.; Cheng, N.; Liu, Y. RSC Adv. 2015, 5, 75-84.
9. Stylianakis, M. M.; Mikroyannidis, J. A.; Kymakis, E. Sol. Energ.
Mat. Sol. C. 2010, 94, 267–274.
Conclusion
A
thiophene modified carbazole-based diaza[7]helicene,
namely, 2,12-dithiophene-5,15-dihexyl-diaza[7]helicene(6), was
synthesised by a photochemical synthesis and characterized by
1H NMR, 13C NMR, HRMS, MS (MALDI-TOF). Its thermal,
10. Bronstein, H.; Chen, Zh. Y.; Ashraf, R. Sh.; Zhang, W. M.; Du, J.
photophysical,
electrochemical,
and
electroluminescent
P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts,
Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus,
H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272–
3275.
properties were investigated. The study indicated that the
compound 6 owned good solubility and high thermal stability
and exhibited better photophysical, electrochemical, and
electroluminescent properties compared with the compound 7
and showed that the introduced thiophene could optimize the
structure and improve the performance and have the potential to
use in other organic light-emitting material. An OLED that
included compound 6 as the guest emitter with the configuration
ITO/NPB (50 nm)/Emitter (30 nm)/Bphen (20 nm)/Mg:Ag (150
nm)/Ag (50 nm) emitted blue light at 460 and 488 nm with the
CIE coordinate of (0.176, 0.260). The device achieved maximum
brightness of 2302 cd m-2, maximum current efficiency of 0.70
cd A-1, maximum power efficiency of 0.15 lm W-1, the maximum
external quantum efficiency of 0.41%. It was worth noting that
introducing thiophene into diaza[7]helicene could improve the
PL and EL performance, especially fluorescence quantum yield
and the external quantum efficiency, whose values were nearly a
two-fold increase.
11. Liu, C.; Jiang, F.; Huang, M.; Yue, R.; Lu, B.; Xu, J.; Liu, G. J.
Electron. Mater. 2011, 40(5), 648-651.
12. Rozlosnik, N. Anal. Bioana. Chem. 2009, 395, 637-645.
13. Park, S. M.; Ebihara, K. J.; Ikegami, T.; Lee, B. J.; Lim, K. B.; Shin,
P. K. Curr. Appl. Phys. 2007, 7, 474-479.
14. Kumar, N. S.; Clement, J. A.; Mohanakrishnan, A. K. Tetrahedron.
2009, 65, 822-830.
15. Panchamukhi, S. I.; Belavagi, N.; Rabinal, M. H.; Khazi, I. A. J.
Fluoresc. 2011, 21, 1515-1519.
16. Rajca, A.; Pink, M.; Xiao, S.; Miyasaka, M.; Rajca, S.; Das, K.;
Plessel, K. J. Org. Chem. 2009, 74, 7504 –7513.
17. Zhu, M.; Ye, T.; Li, C.; Cao, X.; Zhong, C.; Ma, D.; Qin, J.; Yang,
C. J. Phys. Chem. C. 2011, 115, 17965–17972.
18. Sonar, P.; Soh, M. S.; Cheng, Y. H.; Henssler, J. T.; Sellinger, A.
Org. Lett. 2010, 12(15), 3292 –3295.
19. Zhang, M.; Xue, S.; Dong, W.; Wang, Q.; Fei, T.; Gu, C.; Ma, Y.
Chem. Commun. 2010, 46, 3923–3925.
20. Tang, C.; Liu, F.; Xia, Y. J.; Lin, J.; Xie, L. H.; Zhong, G. Y.; Fan,
Q. L.; Huang, W. Org. Electron. 2006, 7, 155-162.
21. An, T. K.; Hahn, S. H.; Nam, S.; Cha, H.; Rho, Y.; Chung, D. S.;
Ree, M.; Kang, M. S.; Kwon, S. K.; Kim, Y. H.; Park, C. E. Dyes
Pigm. 2013, 96, 756-762.
22. Spano, F. C. Annu. Rev. Phys. Chem. 2006, 57, 217-243.
23. Spano, F. C. Accounts. Chem. Res. 2010, 43(3), 429-439.
24. Promarak, V.; Saengsuwan, S.; Jungsuttiwong, S.; Sudyoadsuk, T.;
Keawin, T. Tetrahedron Lett. 2007, 48, 89–93.
25. Chavez, R.; Cai, M.; Tlach, B.; Wheeler, D. L.; Kaudal, R.;
Tsyrenova, A.; Tomlinson, A. L.; Shinar, R.; Shinar, J.; Jeffries-El,
M. J. Mater. Chem. C, 2016, 4, 3765–3773.
26. Data, P.; Kurowska, A.; Pluczyk, S.; Zassowski, P.; Pander, P.;
Jedrysiak, R.; Czwartosz, M.; Otulakowski, L.; Suwinski, J.;
Lapkowski, M.; Monkman, A. P. J. Phys. Chem. C. 2016, 120,
2070–2078.
27. Kim, S. K.; Yang, B.; Ma, Y.; Lee, J. H.; Park, J. W. J. Mater.
Chem. 2008, 18, 3376–3384.
28. Huang, J.; Su, J. H.; Li, X.; Lam, M. K.; Fung, K. M.; Fan, H. H.;
Cheah, K. W.; Chen, C. H.; Tian, H. J. Mater. Chem. 2011, 21,
2957–2964.
29. Tao, S.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Huang, D.; Zhang, X. J.
Phys. Chem. C. 2008, 112, 14603–14606.
30. Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877–910.
31. Michinobu, T.; Osako, H.; Shigehara, K. Macromolecules. 2009,
42, 8172–8180.
Acknowledgements
The research was supported by the Natural Science
Foundation of Shandong Province [grant number ZR2015EM006]
and the National Natural Science Foundation of China [grant
number 51372143].
Supplementary data
1
Supplementary data (experimental section, and H NMR,
13C NMR, HRMS, MALDI-TOF spectra of compounds 1-6)
associated with this article can be found, in the online version, at
.
References
1. Wang, P.; Hong, Z.; Xie, Z.; Tong, S.; Wong, O.; Lee, C. S.; Wong,
N.; Hung, L.; Lee, S. Chem. Commun. 2003, 1664–1665.
2. Tsuzuki, T.; Tokito, S. Adv. Mater. 2007, 19, 276–280.
3. Cocchi, M.; Virgili, D.; Fattori, V.; Rochester, D. L.; Williams, J. A.
G. Adv. Funct. Mater. 2007, 17, 285–289.
4. Zhu, M.; Yang, C. Chem. Soc. Rev. 2013, 42, 4963–4976.
5. Liu, C.; Fu, Q.; Zou, Y.; Yang, C.; Ma, D.; Qin, J. Chem. Mater.
2014, 26, 3074–3083.
6. Hancock, J. M.; Gifford, A. P.; Tonzola, C. J.; Jenekhe, S. A. J.
Phys. Chem. C. 2007, 111, 6875–6882.