C O M M U N I C A T I O N S
Table 2. [3 + 2] Cycloadditions of 1a-b with Carbonyl
Scheme 3
Substratesa
The TBDPS function in 11 was transformed into a hydroxy group
under basic conditions following a literature protocol7 in 60%
isolated yield with the sulfonamide function fully intact.
In summary, 2-tert-butyldiphenylsilylmethyl-substituted aziri-
dines and the corresponding azetidine reacted efficiently with nitriles
and carbonyl substrates to form imidazoline, oxazolidine, and
tetrahydropyrimidine products. The azetidine rearranged to the
pyrrolidine skeleton efficiently under BF3‚Et2O conditions. These
protocols will find application in synthesis, in general, and in drug
design, in particular. The development of the enantioselective
versions of these ring-forming methodologies and their applications
to the syntheses of selected drug candidates are currently being
explored.
Acknowledgment. Authors thank CSIR, Government of India,
for financial support. This work is dedicated to Professor Mugio
Nishizawa on the occasion of his 60th birthday.
Supporting Information Available: Experimental details and
characterization data (PDF). This material is available free of charge
References
a Unless noted otherwise, all the reactions were carried out in CH2Cl2
for 5 min using 1 equiv each of the carbonyl substrate and BF3‚Et2O at 25
°C. b Isolated yields. c Reaction was conducted at -78 °C.
(1) (a) Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887. (b)
Schreiber, S. L. Science 2000, 287, 1964. (c) De Laet, A.; Hehenkamp,
J. J.; Wife, R. L. J. Heterocycl. Chem. 2000, 37, 669. (d) Janvier, P.;
Sun, X.; Bienayme, H.; Zhu, J. J. Am. Chem. Soc. 2002, 124, 2560.
(2) For reviews on reactions of aziridines, see: (a) Ibuka, T. Chem. Soc. ReV.
1991, 27, 145. (b) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 106,
625. (c) Rayner, C. M. Synlett 1997, 11. (d) McCoull, W.; Davis, F. A.
Syntheis 2000, 1347. (e) Sweeney, J. B. Chem. Soc. ReV. 2002, 31, 247.
(f) Dhanukar, V. H.; Zavialov, L. A. Curr. Opin. Drug DiscoVery DeV.
2002, 5, 918.
Scheme 2
(3) (a) Dahl, R. S.; Finney, N. S. J. Am. Chem. Soc. 2004, 126, 8356. (b)
Bussolo, V. D.; Romano, M. R.; Pineschi, M.; Crotti, P. Org. Lett. 2005,
7, 1299.
Table 3. [4 + 2] Cycloadditions of Azetidine 19 with Nitrilesa
(4) (a) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.,
Ed.; Wiley: Chichester, UK, 1984; Vol. 2, p 89. (b) Ungureanu, I.; Klotz,
P.; Mann, A. Angew. Chem., Int. Ed. 2000, 39, 4615. (c) Pohlhaus, P. D.;
Bowman, R. K.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 2294.
(5) For discussions on silicon-stabilized â-carbocations, see: (a) Fleming, I.
Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976;
p 81. (b) Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.;
Liu, X.; So, J.-H.; Chelius, E. C. Acc. Chem. Res. 1999, 32, 183.
(6) For recent applications of â-effect of silicon to assist the cleavage of
cyclopropane ring, see: (a) Yadav, V. K.; Balamurugan, R. Org. Lett.
2001, 3, 2717. (b) Yadav, V. K.; Balamurugan, R. Chem. Commun. 2002,
514. (c) Yadav, V. K.; Balamurugan, R. Org. Lett. 2003, 5, 4281. (d)
Yadav, V. K.; Sriramurthy, V. Angew. Chem., Int. Ed. 2004, 43, 2669.
(e) Yadav, V. K.; Sriramurthy, V. Org. Lett. 2004, 6, 4495. (f) Yadav, V.
K.; Vijaya Kumar, N. J. Am. Chem. Soc. 2004, 126, 8652.
(7) (a) Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. 1996, 61, 6044. (b)
Liu, D.; Kozmin, S. A. Org. Lett. 2002, 4, 3005.
(8) (a) Ueno, M.; Imaizumi, K.; Sugita, T.; Takata, I.; Takeshita, M. Int. J.
Immunopharm. 1995, 17, 597. (b) Rondu, F.; LeBhihan, G.; Wang, X.;
Lamouri, A.; Touboul, E.; Dive, G.; Bellahsene, B.; Renard, P.; Guardiola-
Lemaitre, B.; Manechez, D.; Penicaud, L.; Ktorza, A.; Godfroid, J.-J. J.
Med. Chem. 1997, 40, 3793. (c) Bousquet, P.; Feldman, J. Drugs 1999,
58, 799. (d) Gust, R.; Keilitz, R.; Schmidt, K.; von Rauch, M. J. Med.
Chem. 2002, 45, 3356.
(9) (a) Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A. Chem. Commun.
2001, 958. (b) Prasad, B. A. B.; Bisai, A.; Singh, V. K. Org. Lett. 2004,
6, 4829.
(10) (a) Gennady, M.; Robert, L.; Aviva, L. J. Biol. Chem. 1999, 274, 6920.
(b) Messer, W. S., Jr.; Abuh, Y. F.; Ryan, K.; Shephered, M. A.;
Schroeder, M.; Abunada, S.; Sehgal, R.; El-Assadi, A. A. Drug DeV. Res.
1997, 40, 171.
(11) (a) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435. (b) Yus, M.; Soler, T.;
Foubelo, F. J. Org. Chem. 2001, 66, 6207 and references therein. (c)
Sasaki, M.; Yudin, A. K. J. Am. Chem. Soc. 2003, 125, 14242.
a All the reactions were carried out in CH2Cl2 for 1 h using 1 equiv
each of the nitrile substrate and BF3‚Et2O at 25 °C. b Isolated yield.
cycles.9 The azetidine 19 reacted smoothly with several nitriles
under BF3‚Et2O conditions at 25 °C to generate the tetrahydropy-
rimidine derivatives 20-22. The results are collected in Table 3.
Tetrahydropyrimidines are reported to exhibit a wide range of
pharmacological activities.10 The azetidine 19 was also employed
to prepare a pyrrolidine derivative. Under BF3‚Et2O conditions, 19
rearranged via silicon migration to form 23 in 92% isolated yield
(Scheme 3). The pyrrolidine derivatives are ubiquitous among
natural products as they are materials of much pharmacological
interest.11
JA055664T
9
J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005 16367