3976
T. Yamamoto et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3973–3976
other hand, growth of the MM cell lines was markedly inhibited by
2. It is also interesting to note that metabolite 2 possesses a prolif-
erating effect on KB and MCF-7 cells. No significant stereospecific
effect was observed for the antitumor activities between enantio-
mers of 1 and 2.
Supplementary data
Supplementary data associated with this article can be found, in
In summary, we have reported the first asymmetric synthesis of
(S)- and (R)-5-hydroxythalidomides (2). Racemization was effec-
tively avoided by the use of HMDS/ZnBr2-induced imidation meth-
od. Incubation experiments at physiological pH revealed that
metabolite 2 is configurationally more stable than thalidomide it-
self due to the contribution of phenolphthalein-like resonance
structures. A preliminary tube formation assay to assess the ability
to inhibit angiogenesis suggests that (S)-1 is the most active and its
enantiomer (R)-1, metabolites (R)-2 and (S)-2 are rather weak com-
pared to (S)-1. On antitumor activities, 2 exhibited proliferating ef-
fects in KB and MCF-7 cells while 1 has very weak antitumor
activities. Despite the higher configurational stability of 2, none
of the significant stereochemical effects in the antitumor assays
was observed for enantiomers of 2. It should be noted that the
inhibitory activity against MM cell lines of 2 is much stronger than
that of 1. All the results indicate that the multiple myeloma inhib-
itory activity of thalidomide may be responsible for its metabolite
2, while anti-angiogenesis is responsible for (S)-1. Although it is re-
ported that hydroxylation of 1 results in increased teratogenicity in
experiments using a developing chick embryo,5a our results appear
to indicate that metabolite 2 is slightly safer for the treatment of
multiple myeloma due to its weaker anti-angiogenesis property.
Further detailed studies to investigate the influence of stereochem-
istry and metabolites on biological activities of thalidomide would
give useful information to develop safer non-teratogenic drugs
based on thalidomide’s structure.
References and notes
1. Hashimoto, Y. Arch. Pharm. 2008, 341, 536.
2. Blaschke, G.; Kraft, H. P.; Fickentscher, K.; Kohler, F. Arzneim.-Forsch. 1979, 29,
1640.
3. Schmahl, H. J.; Nau, H.; Neubert, D. Arch. Toxicol. 1988, 62, 200.
4. (a) Knoche, B.; Blaschke, G. J. Chromatogr., A 1994, 666, 235; (b) Nishimura, K.;
Hashimoto, Y.; Iwasaki, S. Chem. Pharm. Bull. 1994, 42, 1157.
5. (a) Boylen, J. B.; Horne, H. H.; Johnson, W. J. Can. J. Biochem. Physiol. 1964, 42,
35; (b) Marks, M. G.; Shi, J.; Fry, M. O.; Xiao, Z.; Trzyna, M.; Pokala, V.; Ihnat, M.
A.; Li, P.-K. Biol. Pharm. Bull. 2002, 25, 597; (c) Inatsuki, S.; Noguchi, T.; Miyachi,
H.; Oda, S.; Iguchi, T.; Kizaki, M.; Hashimoto, Y.; Kobayashi, H. Bioorg. Med.
Chem. Lett. 2005, 15, 321; (d) Noguchi, T.; Shinji, C.; Kobayashi, H.; Makishima,
M.; Miyachi, H.; Hashimoto, Y. Biol. Pharm. Bull. 2005, 28, 563; (e) Noguchi, T.;
Miyachi, H.; Katayama, R.; Naito, M.; Hashimoto, Y. Bioorg. Med. Chem. Lett.
2005, 15, 3212; (f) Noguchi, T.; Fujimoto, H.; Sano, H.; Miyajima, A.; Miyachi,
H.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2005, 15, 5509; (g) Nakamura, T.;
Noguchi, T.; Kobayashi, H.; Miyachi, H.; Hashimoto, Y. Chem. Pharm. Bull. 2006,
54, 1709.
6. Lepper, E. R.; Smith, N. F.; Cox, M. C.; Scripture, C. D.; Figg, W. D. Curr. Drug
Metab. 2006, 7, 677.
7. Yamamoto, T.; Shibata, N.; Takashima, M.; Nakamura, S.; Toru, T.; Matsunaga,
N.; Hara, H. Org. Biomol. Chem. 2008, 6, 1540.
8. (a) Takeuchi, Y.; Shiragami, T.; Kimura, K.; Suzuki, E.; Shibata, N. Org. Lett. 1999,
1, 1571; (b) Suzuki, E.; Shibata, N. Enantiomer 2001, 6, 275; (c) Shibata, N.;
Yamamoto, T.; Toru, T. In Top. Heterocycl. Chem.; Eguchi, S., Ed.; Springer: Berlin,
Heidelberg, 2007; Vol. 8, pp 73–97.
9. Reddy, P. Y.; Kondo, S.; Toru, T.; Ueno, Y. J. Org. Chem. 1997, 62, 2652.
10. Kita, Y.; Haruta, J.; Fujii, T.; Segawa, J.; Tamura, Y. Synthesis 1981, 451.
11. Meyring, M.; Müehlbacher, J.; Messer, K.; Kastner-Pustet, N.; Bringmann, G.;
Mannschreck, A.; Blaschke, G. Anal. Chem. 2002, 74, 3726.
12. (a) Stephens, T. D. Teratology 1988, 38, 229; (b) D’Amato, R. J.; Loughnan, M. S.;
Flynn, E.; Folkman, J. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4082; (c) Parman, T.;
Wiley, M. J.; Wells, P. G. Nat. Med. 1999, 5, 582.
13. (a) Izuta, H.; Chikaraishi, Y.; Shimazawa, M.; Mishima, S.; Hara, H. Evid. Based
Shimazawa, M.; Hara, H. Exp. Eye Res. 2007, 84, 529.
14. Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Cancer
Res. 1987, 47, 943.
Acknowledgments
Support was provided by JSPS KAKENHI (19390029, 19020024)
and Nagai Foundation Tokyo (Research Grant).