ORGANIC
LETTERS
2005
Vol. 7, No. 22
4919-4922
Synthesis of a Diverse Series of
Phosphacoumarins with Biological
Activity
|
|
Xueshu Li,†, Dongwei Zhang,†, Hai Pang,‡ Feng Shen,† Hua Fu,*,†
Yuyang Jiang,§ and Yufen Zhao†
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology,
Ministry of Education, Department of Chemistry, Tsinghua UniVersity, Beijing 100084,
P. R. China, Laboratory of Structural Biology, Tsinghua UniVersity, Beijing 100084,
P. R. China, and Key Laboratory of Chemical Biology, Guangdong ProVince,
Graduate School of Shenzhen, Tsinghua UniVersity, Shenzhen 518057, P. R. China
Received August 4, 2005
ABSTRACT
We have developed a general and efficient approach to a diverse series of phosphacoumarins as analogues of coumarins with various biological
activities, and the inhibitory activity of the synthesized phosphacoumarins against the enzyme SHP-1, a protein tyrosine phosphatases, was
tested. Some of them showed moderate to good efficiency.
Coumarins are members of the class of compounds called
benzopyrones and have gained considerable synthetic and
pharmacological interest for a long time because of their
various biological activities, such as antitumor activity,1 anti-
HIV activity,2 antioxidation,3 vasorelaxant activity,4 tumor
necrosis factor-R (TNF-R) inhibition,5 antimicrobial activity,6
serine protease inhibition,7 and anticancer activity.8 In the
research field of coumarins, 4-OH coumarin and its deriva-
tives have shown many biological activities, such as inhibi-
tion of gyrase B,9 HIV integrase,2c and protein kinase.10 On
the other hand, organophosphorus compounds continue to
receive widespread attention due to their ubiquity in biologi-
cal systems11 and their potential to serve as novel pharma-
ceuticals.12 Phosphonic acids and their derivatives have often
exhibited biochemical activity similar to that of naturally
occurring carboxylic acids and their derivatives,13 so we
thought that the phosphacoumarins as analogues of coumarins
(Figure 1) might have potential biological activities similar
to that of coumarins. Chen and Rodios’s groups14 have
prepared phosphacoumarins through reaction of salicylalde-
† Department of Chemistry.
(5) (a) Cheng, J. F.; Ishikawa, A.; Ono, Y.; Arrhenius, T.; Nadzan, A.
Bioorg. Med. Chem. Lett. 2003, 13, 3647. (b) Cheng, J. F.; Chen, M.;
Wallace, D.; Tith, S.; Arrhenius, T.; Kashiwagi, H.; Ono, Y.; Ishikawa,
A.; Sato, H.; Kozono, T.; Ato, H.; Nadzan, A. M. Bioorg. Med. Chem.
Lett. 2004, 14, 2411.
(6) Zaha, A. A.; Hazem, A. Microbiologica 2002, 25, 213.
(7) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem.
ReV. 1999, 99, 2735.
(8) Maly, D. J.; Leonetti, F.; Backes, B. J.; Dauber, D. S.; Harris, J. L.;
Craik, C. S.; Ellman, J. A. J. Org. Chem. 2002, 67, 910.
(9) Musicki, B.; Periers, A. M.; Piombo, L.; Laurin, P.; Klich, M.;
Dupuis-Hamelin, C.; Lassaigne, P.; Bonnefoy, A. Tetrahedron Lett. 2003,
44, 9259.
‡ Laboratory of Structural Biology.
§ Graduate School of Shenzhen.
| Equal contribution to this work.
(1) Weber, U. S.; Steffen, B.; Siegers, C. P. Res. Commun. Mol. Pathol.
Pharmacol. 1998, 99, 193.
(2) (a) Thitima, P.; Muney, S.; Stephen, H. H.; Djaja, D. S.; John, M. P.
J. Nat. Prod. 1996, 59, 839. (b) Ptail, A. D.; Freyer, A. J.; Drake, S. E.;
Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A.
L.; Bartus, H. R.; Johnson, R. K.; Hertzberg, R. P.; Westley, J. W. J. Med.
Chem. 1993, 36, 4131. (c) Zhao, H.; Neamati, N.; Hong, H. X.; Mazumder,
A.; Wang, S. M.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. B.
J. Med. Chem. 1997, 40, 242.
(3) Yun, B. S.; Lee, I. K.; Ryoo, I. J.; Yoo, I. D. J. Nat. Prod. 2001, 64,
1238.
(4) Campos-Toimil, M.; Orallo, F.; Santanab, L.; Uriarte, E. Bioorg. Med.
Chem. Lett. 2002, 1, 783.
(10) Yang, E. B.; Zhao, Y. N.; Zhang, K.; Mack, P. Biochem. Biophy.
Res. Commun. 1999, 260, 682.
(11) (a) Westheimer, F. H. Science 1987, 235, 1173. (b) Seto, H.;
Kuzuyama, T.; Nat. Prod. Rep. 1999, 16, 589.
10.1021/ol051871m CCC: $30.25
© 2005 American Chemical Society
Published on Web 10/05/2005