A. Konovets et al. / Tetrahedron: Asymmetry 16 (2005) 3183–3187
3187
COCH3), 2.04 (s, 3H, COCH3), 2.00 (s, 3H, COCH3),
1.93 (s, 3H, COCH3), 1.58–1.39 (m, 2H, CH2CH3),
0.78 (t, J = 7.2 Hz, 3H, CH2CH3); 31P NMR (CDCl3):
diethyl ether (15 mL) and water (5 mL). The organic
phase was washed with brine and dried over MgSO4.
Evaporation of the solvent gave a residue, which was
purified by chromatography (petroleum ether/ethyl ace-
tate 10/1). The enantiomeric excesses were determined
by HPLC analysis.
d
ꢁ4.5; HRMS [M+H]+ C31H39NO10P: calcd
616.2312, found 616.2317.
4.3.2. 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-{[(3S)-3-(diphen-
ylphosphino)pentanoyl]amino}-b-D-glucopyranose,
3b.
Rf = 0.60 (petroleum ether/ethyl acetate 10/15);
Acknowledgements
25
½aꢀD ¼ þ17:2 (c 0.25, CHCl3); 1H NMR (CDCl3): d
7.92–7.83 (m, 2H, Harom), 7.82–7.73 (m, 2H, Harom),
7.52–7.32 (m, 6H, Harom), 5.73 (d, J = 8.8 Hz, 1H, H-
1), 5.68 (br d J = 8.7 Hz, 1H, NH), 5.16 (dd, J = 9.4,
9.2 Hz, 1H, H-3), 5.11 (dd, J = 9.4, 9.4 Hz, 1H, H-4),
4.30 (dd, J = 12.5, 4.5 Hz, 1H, H-6), 4.25 (dd, J = 9.4,
8.8 Hz, 1H, H-2), 4.13 (dd, J = 12.5, 2.2 Hz, 1H, H-
60), 3.83 (ddd, J = 9.4, 4.5, 2.2Hz, 1H, H-5), 3.39–3.24
(m, 1H, CH), 2.40–2.20 (m, 2H, CH2CO), 2.10 (s, 3H,
COCH3), 2.06 (s, 3H, COCH3), 2.04 (s, 3H, COCH3),
1.83 (s, 3H, COCH3), 1.60–1.41 (m, 2H, CH2CH3),
0.80 (t, J = 7.2 Hz, 3H, CH2CH3); 31P NMR (CDCl3):
A.K. thanks the CNRS, and A.P. and K.G. thank the
MENSR for fellowships.
References
1. Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99,
1649–1651.
2. Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am.
Chem. Soc. 1992, 114, 9327–9343.
3. (a) Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 566–568; (b) Williams, J. M. J. Synlett 1996, 705–
710; (c) Helmchen, G. J. Organomet. Chem. 1999, 576,
203–214.
d
ꢁ4.5; HRMS [M+H]+ C31H39NO10P: calcd
616.2312, found 616.2316.
4. (a) Dieguez, M.; Pamies, O.; Claver, C. Chem. Rev. 2004,
104, 3189–3215; (b) Dieguez, M.; Pamies, O.; Ruiz, A.;
Diaz, Y.; Castillon, S.; Claver, C. Coord. Chem. Rev. 2004,
248, 2165–2192.
5. Nazarov, A. A.; Hartinger, C. G.; Arion, V. B.; Giester,
G.; Keppler, B. K. Tetrahedron 2002, 58, 8489–8492.
6. Khiar, N.; Araujo, C. S.; Alvarez, E.; Fernandez, I.
Tetrahedron Lett. 2003, 44, 3401–3404.
7. (a) Hong-Wick, K.; Pregosin, P. S.; Trabesinger, G.
Organometallics 1998, 17, 3254–3264; (b) Barbaro, P.;
Currao, A.; Hermann, J.; Nesper, R.; Pregosin, P. S.;
Salzmann, R. Organometallics 1996, 15, 1879–1888.
8. Glaser, B.; Kunz, H. Synlett 1998, 53–55.
9. (a) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.;
Uemura, S. Chem. Commun. 1999, 415–416; (b) Yonehara,
K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. J. Org.
Chem. 1999, 64, 9374–9380; (c) Hashizume, T.; Yonehara,
K.; Ohe, K.; Uemura, S. J. Org. Chem. 2000, 65, 5197–
5201.
4.3.3.
1,3,4,6-Tetra-O-acetyl-2-deoxy-2-({[2-(diphen-
ylphosphino)phenyl]acetyl}amino)-b-D-glucopyranose, 3c.
Rf = 0.55 (petroleum ether/ethyl acetate 10/15);
25
½aꢀD ¼ þ14:5 (c 0.2, CHCl3); 1H NMR (CDCl3): d
7.80–7.60 (m, 4H, Harom), 7.52–7.38 (m, 6H, Harom),
6.03 (br d J = 8.1 Hz, 1H, NH), 5.75 (d, J = 8.7 Hz,
1H, H-1), 5.24 (dd, J = 9.8, 9.4 Hz, 1H, H-3), 5.10
(dd, J = 9.8, 9.4 Hz, 1H, H-4), 4.28 (dd, J = 12.4,
4.2 Hz, 1H, H-6), 4.21 (dd, J = 9.4, 8.7 Hz, 1H, H-2),
4.12 (dd, J = 12.4, 1.9 Hz, 1H, H-60), 3.86 (ddd,
J = 9.8, 4.2, 1.9 Hz, 1H, H-5), 2.58–2.49 (m, 2H,
CH2), 2.36–2.30 (m, 2H, CH2CO), 2.08 (s, 3H, COCH3),
2.07 (s, 3H, COCH3), 2.04 (s, 3H, COCH3), 1.98 (s, 3H,
COCH3); 31P NMR (CDCl3):
d
ꢁ15.2; HRMS
[M+Na]+ C29H34NO10NaP: calcd 610.1818, found
610.1815.
10. Borriello, C.; Cucciolito, M. E.; Panunzi, A.; Ruffo, F.
Inorg. Chim. Acta 2003, 353, 238–244.
4.4. General procedure for the allylic alkylation
11. Brunner, H.; Scho¨nherr, M.; Zabel, M. Tetrahedron:
Asymmetry 2003, 14, 1115–1122.
12. Tollabi, M.; Framery, E.; Goux-Henry, C.; Sinou, D.
Tetrahedron: Asymmetry 2003, 14, 3329–3333.
13. Hou, X.-L.; Dong, D. X.; Yuan, K. Tetrahedron: Asym-
metry 2004, 15, 2189–2191.
In a Schlenk tube, [Pd(g3-C3H5)Cl]2 (8.8 mg, 24 lmol)
and the ligand (48 lmol) were dissolved in THF
(1 mL). After being stirred for 1 h at rt, a solution of
racemic 1,3-diphenyl-2-propenyl acetate (302 mg,
1.2 mmol) in THF (1 mL) was added. After 30 min, this
solution was transferred to a Schlenk tube containing
dimethyl malonate (475 mg, 3.6 mmol), BSA (732 mg,
3.6 mmol), and LiOAc (2.5 mg, 24 lmol) in THF
(2 mL). The reaction mixture was stirred at the desired
temperature for 24 h. The conversion was determined
by GC analysis. The mixture was then diluted with
´
14. Leautey, M.; Jubault, P.; Pannecoucke, X.; Quirion, J.-C.
Eur. J. Org. Chem. 2003, 3761–3768.
15. (a) Butts, C. P.; Crosby, J.; Lloyds-Jones, G. C.; Stephen,
S. C. Chem. Commun. 1999, 1707–1708; (b) Fairlamb, I. J.
S.; Lloyd-Jones, G. C. Chem. Commun. 1999, 2447–2448;
(c) Kim, Y. K.; Lee, S. J.; Ahn, K. H. J. Org. Chem. 2000,
65, 7807–7813.