5078
M. E. Jung et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5076–5079
again using the conditions utilized earlier, for example,
HCl in ethyl acetate, gave the amine 14 in 73% yield.
The Cbz-protected dipeptide (Asn-Pro) 15 was prepared
in four steps using standard solution-phase peptide syn-
thesis methodology. Coupling of the dipeptide analogue
14 to 15 using PyBOP and HunigÕs base gave the desired
tetrapeptide analogue 16 in 74% yield. Final removal of
the two silyl groups with fluoride ion gave the SrtB tet-
rapeptide analogue 17 in 54% yield. This analogue again
has the mercaptomethyl (CH2SH) group in place of the
carbonyl unit of threonine.
In summary, we have developed an efficient method for
the synthesis of the bis-protected L-threonine analogue 8
and have used it in the preparation of two tetrapeptide
analogues of the sorting sequence for SrtA and SrtB,
compounds 11 and 17, respectively. These compounds
covalently modified their respective enzymes at reason-
able concentrations. The use of these new covalently
bound sortase analogues for the determination of the
three-dimensional structure of a bound sortase is cur-
rently under study in our laboratories.
To test the viability of these compounds as possible
covalent binders, the SrtA tetrapeptide analogue 11
(5 M excess) was added to SrtA (5 lL of 20 lM solu-
tion) in a pH 8 buffer (50 mM Tris–HCl, 100 mM NaCl)
with and without CaCl2 and incubated at room temper-
ature. Samples were removed periodically and analyzed
using reverse-phase HPLC on a C18 column. After 20 h,
a large new peak appears, while the original peak for
SrtA disappears (Fig. 1). Likewise, when the SrtB tetra-
peptide analogue 17 was added to SrtB under similar
conditions, a new peak again appears in the reverse-
phase HPLC along with the concomitant disappearance
of the original peak due to SrtB.
Acknowledgments
We thank Dr. Robert Damoiseaux at the UCLA Molec-
ular Screening Shared Resource for his assistance. We
also thank the National Institutes of Health for support
via grant AI52217.
References and notes
1. (a) Ton-That, H.; Marraffini, L. A.; Schneewind, O.
Biochim. Biophys. Acta 2004, 1694, 269; (b) Mazmanian,
S. K.; Ton-That, H.; Schneewind, O. Mol. Microbiol.
2001, 40, 1049; (c) Paterson, G. K.; Mitchell, T. J. Trends
Microbiol. 2004, 12, 89.
2. (a) Mazmanian, S. K.; Liu, G.; Hung, T. T.; Schneewind,
O. Science 1999, 285, 760; (b) Navarre, W. W.; Schnee-
wind, O. Mol. Microbiol. 1994, 14, 115; (c) Ruzin, A.;
Severin, A.; Ritacco, F.; Tabei, K.; Singh, G.; Bradford, P.
A.; Siegel, M. M.; Projan, S. J.; Shlaes, D. M. J. Bacteriol.
2002, 184, 2141; (d) Perry, A. M.; Ton-That, H.; Mazma-
nian, S. K.; Schneewind, O. J. Biol. Chem. 2002, 277,
16241.
3. (a) Pallen, M. J.; Lam, A. C.; Antonio, M.; Dunbar, K.
Trends Microbiol. 2001, 9, 97; (b) Comfort, D.; Clubb, R.
T. Infect. Immun. 2004, 72, 2710.
4. (a) Mazmanian, S. K.; Liu, G.; Jensen, E. R.; Lenoy, E.;
Schneewind, O. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
5510; (b) Bolken, T. C.; Franke, C. A.; Jones, K. F.;
Zeller, G. O.; Jones, C. H.; Dutton, E. K.; Hruby, D. E.
Infect. Immun. 2001, 69, 75; (c) Mazmanian, S. K.; Ton-
That, H.; Su, K.; Schneewind, O. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 2293; (d) Bierne, H.; Mazmanian, S. K.;
Trost, M.; Pucciarelli, M. G.; Liu, G.; Dehoux, P.; Jansch,
L.; Garcia-del Portillo, F.; Schneewind, O.; Cossart, P.
Mol. Microbiol. 2002, 43, 869; (e) Garandeau, C.; Reglier-
Poupet, H.; Dubail, L.; Beretti, J.-L.; Berche, P.; Charbit,
A.; Glaser, P.; Amend, A.; Baquero-Mochales, F.; Bloec-
ker, H.; Brandt, P.; Buchrieser, C.; Chakraborty, T.;
Couve, E.; De Daruvar, A.; Dehoux, P.; Domann, E.;
Dominguez-Bernal, G.; Durant, L.; Entian, K.-D.; Fran-
geul, L.; Fsihi, H.; Garcia Del Portillo, F.; Garrido, P.;
Goebel, W.; Gomez-Lopez, N.; Hain, T.; Hauf, J.;
Jackson, D.; Kreft, J.; Kunst, F.; Mata-Vicente, J.; Ng,
E.; Nordsiek, G.; Perez-Diaz, J. C.; Remmel, B.; Rose, M.;
Rusniok, C.; Schlueter, T.; Vazquez-Boland, J.-A.; Voss,
H.; Wehland, J.; Cossart, P. Infect. Immun. 2002, 70, 1382;
(f) Jonsson, I. M.; Mazmanian, S. K.; Schneewind, O.;
Verdrengh, M.; Bremell, T.; Tarkowski, A. J. Infect. Dis.
2002, 185, 1417; (g) Lee, S. F.; Boran, T. L. Infect. Immun.
2003, 71, 676.
Figure 1. (a) Reverse-phase (C18) HPLC traces of sortase A alone
(SrtA alone) and treated with a 10-fold excess of 11 (SrtA-SH). (b)
Reverse-phase (C18) HPLC traces of sortase B alone (SrtB alone) and
treated with a 5-fold excess of 17 after 12 h at pH 7 (modified SrtB).
5. (a) Ilangovan, U.; Ton-That, H.; Iwahara, J.; Schnee-
wind, O.; Clubb, R. T. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 6056; (b) Zong, Y.; Bice, T. W.; Ton-That,