LETTER
Synthesis of 4-Cyano 2,3-Dihydrooxazoles
2675
(2) (a) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A.
Synthesis 2001, 1975. (b) Colantoni, D.; Fioravanti, S.;
Pellacani, L.; Tardella, P. A. Org. Lett. 2004, 6, 197.
(3) Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A.
Synlett 2004, 1083.
(4) (a) Huisgen, R.; Scheer, W.; Huber, H. J. Am. Chem. Soc.
1967, 89, 1753. (b) Baldwin, J. E.; Pudussery, R. G.;
Qureshi, A. K.; Sklarz, B. J. Am. Chem. Soc. 1968, 90, 5325.
(5) Texier-Boullet, F.; Foucaud, A. Tetrahedron Lett. 1982, 23,
4927.
(8) The formation of the unstable 2,3-dihydroisoxazole (4-
isoxazoline) (IV, Figure 1), as the precursor of aziridine I
shown in the Scheme 2, is not supported by any experimental
evidence. For a recent example of 2,3-dihydroisoxazoles as
synthons for 2-acyl aziridines see: Ishikawa, T.; Kudoh, T.;
Yoshida, J.; Yasuhara, A.; Manabe, S.; Saito, S. Org. Lett.
2002, 4, 1907.
(6) Typical Experimental Procedure.
All compounds were synthesized with a Carousel Reaction
Station from Radleys Discovery Technologies (U.K.). To
the obtained 2-alkylidene 3-oxo nitriles in CH2Cl2, CaO and
nosyloxycarbamates were added in the amounts reported in
Table 1. After completion (TLC and GC analyses), the crude
reaction mixtures were filtered through plugs of silica gel
using a 9:1 hexane–EtOAc mixture and the 2,5-disubstituted
4-cyano 2,3-dihydrooxazoles were obtained after solvent
removal.
Figure 1
(9) Lopez-Calle, E.; Keller, M.; Eberbach, W. Eur. J. Org.
Chem. 2003, 1438.
(10) (a) Lown, J. W.; Smalley, R. K.; Dallas, G. J. Chem. Soc.,
Chem. Commun. 1968, 1543. (b) Lown, J. W.; Matsumoto,
K. Can. J. Chem. 1970, 48, 3399. (c) Person, H.; Luanglath,
K.; Baudru, M.; Foucaud, A. Bull. Soc. Chim. Fr. 1976,
1989. (d) Freeman, J. P. Chem. Rev. 1983, 83, 241.
(11) (a) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7,
1105. (b) Eberbach, W. Methods of Molecular
Selected spectral data of new compounds.
Compound 13: yellow oil. IR (CCl4): 2223, 1714, 1630 cm–1.
1H NMR (300 MHz, CDCl3): d = 0.94 (t, J = 7.2 Hz, 3 H),
1.28 (s, 9 H), 1.67–1.78 (m, 2 H), 5.23 (s, 2 H), 5.97 (t,
J = 5.4 Hz, 1 H), 7.30–7.48 (m, 5 H). 13C NMR (75 MHz,
CDCl3): d = 10.7, 23.7, 27.8, 40.9, 69.2, 91.0, 95.3, 116.4,
128.1, 128.3, 128.8, 135.1, 152.1, 157.9. GCMS: m/z (%) =
314 (2) [M+], 179 (11), 137 (27), 91 (100), 57 (15). HRMS
(ES Q-TOF): m/z calcd for C18H23N2O3 [M + H]+: 315.1709;
found: 315.1601.
Transformations, In Science of Synthesis (Houben–Weyl),
Vol. 27; Padwa, A., Ed.; Georg Thieme Verlag: Stuttgart,
2004, 441.
(12) With respect to 13,6 the 1H NMR spectrum of the crude
mixture shows additional frequencies at d = 1.12 (t, J = 7.2
Hz, 3 H), 1.31 (s, 9 H), 1.83–1.98 (m, 2 H), 2.90 (t, J = 6.6
Hz, 1 H), 5.08–5.20 (m, 2 H). In particular the signal at
d = 2.90 is typical of an aziridine proton.
Compound 18: yellow oil. IR (CCl4): 2218, 1717, 1645 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.01 (d, J = 6.6 Hz, 3 H),
1.02 (d, J = 6.6 Hz, 3 H), 1.36 (t, J = 7.2 Hz, 3 H), 1.68–1.74
(m, 2 H), 1.87–1.92 (m, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 6.24
(dd, J = 6.6 Hz, 1 H), 7.40–7.53 (m, 3 H), 7.84–7.87 (m, 2
H). 13C NMR (75 MHz, CDCl3): d = 14.1, 22.4, 22.7, 23.4,
42.8, 63.0, 90.9, 93.7, 114.7, 125.9, 126.3, 128.6, 128.7,
131.3, 152.7, 156.3. GCMS: m/z (%) = 300(7) [M+], 227
(12), 171 (53), 145 (14), 105 (100), 77 (32). HRMS (ES Q-
TOF): m/z calcd for C17H21N2O3 [M + H]+: 301.1552; found:
301.1546.
(13) We reported that stable polyfunctionalized 2-acyl aziridines
were obtained using nosyloxycarbamates and a Wittig
reaction led us to interesting alkenyl aziridines. See:
Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P. A.
Mol. Diversity 2003, 6, 177.
(14) (a) Vedejs, E.; Grissom, J. W. J. Am. Chem. Soc. 1988, 110,
3238. (b) Vedejs, E.; Monahan, S. D. J. Org. Chem. 1997,
62, 4763.
(15) (a) Jones, W. D.; Ciske, F. L.; Dinerstein, R. J.; Diekema, K.
A. U.S. 6004959, 1999; Chem. Abstr. 1999, 132, 35524.
(b) Hanaki, N.; Goto, T. Jpn. Kokai Tokkyo Koho, JP
2000273333, 2000; Chem. Abstr. 2000, 133, 268226.
(c) Hanaki, N.; Goto, T. Jpn. Kokai Tokkyo Koho, JP
2000275773, 2000; Chem. Abstr. 2000, 133, 288779.
(16) Caiazzo, A.; Dalili, S.; Picard, C.; Sasaki, M.; Siu, T.; Yudin,
A. K. Pure Appl. Chem. 2004, 76, 603.
(7) (a) Pihuleac, J.; Bauer, L. Synthesis 1989, 61.
(b) Hanessian, S.; Johnstone, S. J. Org. Chem. 1999, 64,
5896. (c) Fioravanti, S.; Marchetti, F.; Morreale, A.;
Pellacani, L.; Tardella, P. A. Org. Lett. 2003, 5, 1019.
(d) Fioravanti, S.; Colantoni, D.; Pellacani, L.; Tardella, P.
A. J. Org. Chem. 2005, 70, 3296.
Synlett 2005, No. 17, 2673–2675 © Thieme Stuttgart · New York