F. Martin et al. / Tetrahedron Letters 46 (2005) 7973–7975
7975
surface 9a
strated and the surface proved useful for the covalent
immobilisation of peptides. Work is in progress to devel-
op this methodology for biochips applications.
22
20
18
16
14
12
10
8
surface 10a
Acknowledgements
We thank Dr Franc¸oise VINET from LETI-CEA-Gre-
noble for a gift of thermically oxidised silicon wafers.
We thank Dr Oleg MELNYK from Institut Pasteur de
Lille, for useful discussion and for a gift of rhodami-
nated peptides.
6
4
2
0
-2
500
550
600
650
700
References and notes
Wavelength (nm)
1. New focus: (a) Service, Robert F. Science 2001, 294, 2080–
2082; (b) Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.;
Casamyor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidling-
maier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.;
Gerstein, M.; Snyder, M. Science 2001, 293, 2101–2105.
2. (a) Nonglaton, G.; Benitez, I. O.; Guisle, I.; Pipelier, M.;
Figure 2. Fluorescence analysis of surface 9a and 10a (kex = 400 nm).
oxytetramethylrhodamine were synthesised to investi-
gate the reactivity of semicarbazide glass slide.2b These
peptides were used in our study to determine the acces-
sibility and reactivity of hydroxylamine surfaces towards
biomolecules (Scheme 3).
´
Leger, J.; Dubreuil, D.; Tellier, C.; Talham, D. R.; Bujoli,
B. J. Am. Chem. Soc. 2004, 126, 1497–1502; (b) Olivier, C.;
Hot, D.; Huot, L.; Ollivier, N.; El-Mahdi, O.; Gouyette, C.;
Huynh-Dinh, T.; Gras-Masse, H.; Lemoine, Y.; Melnyk, O.
Bioconjugate Chem. 2003, 14, 430–439; (c) Qian, W.; Yao,
D.; Xu, B.; Yu, F.; Lu, Z.; Knoll, W. Chem. Mater. 1999,
11, 1399–1401; (d) Houseman, B. T.; Gavalt, S. E.;
Mrksich, M. Langmuir 2003, 19, 1522–1531.
Peptide 7 should bind covalently to the hydroxylamine-
supported wafers through the a-oxo oxime linkage
whereas peptide 8 should be adsorbed at the surface
through non-covalent interactions. Thermically oxidised
silicon wafers were functionalised as above with com-
pounds 3a and 3b as for 4 to give surfaces 6a and 6b.
Both surfaces were reacted with peptides 7 and 8,
washed following the method described with semicar-
bazide glass slide.2b The results of the fluorescence were
similar for surfaces 9a and 9b and for surfaces 10a and
10b. The fluorescence of surfaces 9a and 10a is reported
in Figure 2. The intensity of fluorescence with peptide 7
was 5-fold higher than with peptide 8. These experi-
ments demonstrate the covalent attachment of COCHO
peptide whereas peptide 8 was only adsorbed at the sur-
face through non-covalent links.
3. (a) Shao, J.; Tam, J. P. J. Am. Chem. Soc. 1995, 117, 3893–
3899; (b) Forget, D.; Boturyn, D.; Defrancq, E.; Lhomme,
J.; Dumy, P. Chem. Eur. J. 2001, 7, 3976–3984; (c) Boturyn,
D.; Coll, J. L.; Garanger, E.; Favrot, M. C.; Dumy, P. J.
Am. Chem. Soc. 2004, 126, 5730–5739.
4. (a) Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S.
Bioconjugate Chem. 2001, 12, 346–353; (b) Xu, Q.; Lam, K.
S. Tetrahedron Lett. 2002, 43, 4435–4437.
5. (a) Kar, S.; Joly, P.; Granier, M.; Melnyk, O.; Durand, J.
`
O. Eur. J. Org. Chem. 2003, 4132–4139; (b) Joly, P.; Ardes-
Guisot, N.; Kar, S.; Granier, M.; Durand, J.-O.; Melnyk,
O. Eur. J. Org. Chem. 2005, 2473–2480.
6. (a) Ulman, A. Chem. Rev. 1996, 96, 1533–1554; (b) Organic
Thin Films and Surfaces:Directions for the Nineties; Ulman,
A., Ed.; Academic Press: San Diego, CA, 1995.
7. Granier, M.; Lanneau, G. F.; Moineau, J.; Girard, P.;
Ramonda, M. Langmuir 2003, 19, 2691–2695.
8. Balachander, N.; Sukenik, C. N. Langmuir 1990, 11, 1621–
1627.
In conclusion, trialkoxysilanes possessing an unpro-
tected hydroxylamine group were successfully synthes-
ised at a preparative scale. These coupling agents were
efficient for the functionalisation of oxidised silicon
wafers with a high-density monolayer. The accessibility
of the hydroxylamine group at the surface was demon-
9. Lambacher, A.; Fromherz, P. Appl. Phys. A 1996, 63, 207–
216.