Communications
[4] J. M. Daubenspeck, H. Zeng, P. Chen, S. Dong, C. T. Steichen,
N. R. Krishna, D. G. Pritchard, C. L. Turnbough, Jr., J. Biol.
Chem. 2004, 279, 30945 – 30953.
[5] M. Tamborrini, D. B. Werz, J. Frey, G. Pluschke, P. H. Seeberger,
Angew. Chem. 2006, 118, 6731 – 6732; Angew. Chem. Int. Ed.
2006, 45, 6581 – 6582.
[6] There have been two syntheses of the anthrax tetrasaccharide
with an anomeric protecting group at the reducing end. a) D. B.
Werz, P. H. Seeberger, Angew. Chem. 2005, 117, 6474 – 6476;
Angew. Chem. Int. Ed. 2005, 44, 6315 – 6318; b) R. Adamo, R.
Saksena, P. Kovac, Carbohydr. Res. 2005, 340, 2579 – 2582; c) R.
Saksena, R. Adamo, P. Kovac, Bioorg. Med. Chem. Lett. 2006,
16, 615 – 617. Of the two syntheses that in Ref. [6a] is the shorter.
For the related trisaccharide, see: d) A. S. Mehta, E. Saile, W.
Zhong, T. Buskas, R. Carlson, E. Kannenberg, Y. Reed, C. P.
Quinn, G.-J. Boons, Chem. Eur. J. 2006, 12, 9136 – 9149.
[7] a) R. S. Babu, M. Zhou, G. A. OꢀDoherty, J. Am. Chem. Soc.
2004, 126, 3428 – 3429; b) M. Zhou, G. A. OꢀDoherty, Org. Lett.
2006, 8, 4339 – 4342.
[8] While there are many uses of the term “de novo” in carbohy-
drate chemistry, we use the term de novo asymmetric synthesis
to refer to the use of catalysis for the asymmetric synthesis of
carbohydrates from achiral compounds (e.g., this de novo route
derives its asymmetry from enantiodivergent Noyori reductions
of acetylfuran 7).
Scheme 7. Completion of the synthesis of anthrax tetrasaccharide 1.
TMSOTf=trimethylsilyl trifluoromethanesulfonate, HBTU=O-benzo-
triazole-N,N,N’,N’-tetramethyluronium-hexafluorophosphate
[9] Sigma-Aldrich sells acetylfuran 7 for $0.09gꢀ1, l-rhamnose (2)
for $5gꢀ1 and d-fucose (3) for $71gꢀ1, see: www.sigmaaldrich.-
com.
methyl ether was installed in 25 by selective levulinate
hydrolysis (H2NNH3OAc, 96%) and silver(I) oxide promoted
methylation (Ag2O in MeI, 94%).[19] A one-pot global
deprotection of the acetate in 25 along with azide reduction
afforded a primary amine (PEt3/LiOH/H2O, 95%), which was
selectively coupled with 3-hydroxy-3-methylbutanoic acid
(HBTU/Et3N, 90%) to give amide 26. Finally the natural
product 1 was prepared by hydrogenolysis of both benzyl
groups (H2, Pd/C) in good yield (96%).[20]
In summary, a de novo asymmetric synthesis of the natural
product anthrax tetrasaccharide 1 has been developed in 25
steps (longest linear, 39 total steps) 13% overall yield from
achiral acetylfuran 7. This highly stereocontrolled route
provides sufficient quantities of 1 for further studies. While
this route is longer than the Seeberger approach in terms of
longest linear sequence (20 steps and 7% overall yield from
d-fucose (3)), it is shorter in terms of total steps (41 total
steps). Thus we demonstrate the practicality of de novo
approaches for oligosaccharide synthesis.[8] Further applica-
tion of this approach to the preparation of an anthrax vaccine
and detection device is ongoing.
[10] a) M. Li, J. G. Scott, G. A. OꢀDoherty, Tetrahedron Lett. 2004, 45,
1005 – 1009; b) R. S. Babu, G. A. OꢀDoherty, J. Carbohydr.
Chem. 2005, 24, 169 – 177; c) H. Guo, G. A. OꢀDoherty, Org.
Lett. 2005, 7, 3921 – 3924.
[11] a) J. L. Luche, J. Am. Chem. Soc. 1978, 100, 2226 – 2227; b) M. H.
Haukaas, G. A. OꢀDoherty, Org. Lett. 2001, 3, 401 – 404.
[12] a) R. N. de Oliveira, L. Cottier, D. Sinou, R. M. Srivastava,
Tetrahedron 2005, 61, 8271 – 8281; b) H. Guo, G. A. OꢀDoherty,
Org. Lett. 2006, 8, 1609 – 1612.
[13] V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett. 1976,
17, 1973 – 1976.
[14] a) R. Saksena, R. Adamo, P. Kovac, Carbohydr. Res. 2005, 340,
1591 – 1600; b) D. W. C. Jones, R. J. Nash, E. A. Bell, J. M.
Williams, Tetrahedron Lett. 1985, 26, 3125 – 3126.
[15] While in principle 16 can be prepared by Fischer glycosylation,
in practice for moderately expensive sugars, like l-rhamnose, a
four-step protocol is preferred: 1) peracylation, 2) selective
hydrolysis of the anomeric position with HBr, 3) Ag- or Hg-
promoted glycosylation of the anomeric bromide, and 4) LiOH
global ester hydrolysis]; see Ref. [6].
[16] a) S. V. Ley, M. Woods, A. Zanotti-Gerosa, Synthesis 1992, 52 –
54; b) S. V. Ley, R. Leslie, P. D. Tiffin, M. Woods, Tetrahedron
Lett. 1992, 33, 4767 – 4770.
[17] See Ref. [7b] and a) J. F. King, A. D. Allbutt, Can. J. Chem. 1970,
48, 1754 – 1769; b) Y. E. Tsvetkov, A. S. Shashkov, Y. A. Knirel,
U. Zahringer, Carbohydr. Res. 2001, 335, 221 – 243.
[18] While both reactions worked well, we had a preference for the
phosphate glycosylation (5 + 6), see: a) O. J. Plante, E. R.
Palmacci, R. B. Andrade, P. H. Seeberger, J. Am. Chem. Soc.
2001, 123, 9545 – 9554; b) R. R. Schmidt, W. Kinzy, Adv.
Carbohydr. Chem. Biochem. 1994, 50, 21 – 123.
Received: March 28, 2007
Published online: May 30, 2007
Keywords: anthrax tetrasaccharide · carbohydrates ·
.
glycosylation · natural products · palladium
[1] a) P. S. Brachman, A. F. Kaufmann in Bacterial Infections of
Humans (Eds.: A. S. Evans, P. S. Brachman), Plenum Medical
Book Company, New York, 1998, pp. 95 – 111.
[19] Significantly lower yields were observed when cosolvents were
used. Similarly low yields were also observed by Boons et al., see
Ref. [6d].
[20] Since the spectral data for synthetic 1 matches that of the
isolated material, this constitutes the first synthesis of 1; see
Ref. [6].
[2] a) M. Mock, A. Fouet, Annu. Rev. Microbiol. 2001, 55, 647 – 671;
b) P. Sylvestre, E. Couture-Tosi, M. Mock, Mol. Microbiol. 2002,
45, 169 – 178.
[3] a) W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, P.
Setlow, Microbiol. Mol. Biol. Rev. 2000, 64, 548 – 572; b) M.
Moayeri, S. H. Leppla, Curr. Opin. Microbiol. 2004, 7, 19 – 24.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 5206 –5208