A. G. Neo et al. / Tetrahedron Letters 46 (2005) 7977–7979
7979
11. 2-(N-Benzyl-N-chloroacetyl)amino-2-(2-chloro-5-nitro)phen-
ylacetic acid N-(4-ethoxy)phenyl amide (7a): A solution of
2-chloro-5-nitrobenzaldehyde (3) (1.11 g, 6.0 mmol) in
MeOH (10 mL) was treated with benzylamine (4a)
(642 mg, 6.0 mmol). The resulting mixture was stirred
for 15 min at rt and then treated with a solution of the 4-
ethoxyphenyl isocyanide (5a) (839 mg, 5.7 mmol) in
MeOH (5 mL) and chloroacetic acid (6) (567 mg,
6.0 mmol), in the order given. The resulting mixture was
stirred for 24 h at rt and then cooled and filtered. The
collected product was washed with cold i-PrOH, i-Pr2O,
and pentane, in the order given, and dried to give 2.94 g
(87%) of almost pure 7a.
phenyl isothiocyanate to give the thiourea 11k in 65%
overall yield.
In conclusion, the present method allows a facile prepa-
ration of derivatives containing the 1,4-benzothiazin-3-
one core by means of a three-step synthesis. The first
and the second steps are very easy to perform, simply
by mixing the reagents. The purification of both the
Ugi adducts 7 and the isothiouronium salts 8 is unneces-
sary and also the last step is experimentally simple. The
final benzothiazinones are obtained in good yields and
the substituents in position 4 and at the amide nitrogen
can be easily changed by changing the amine and the
isocyanide in the Ugi reaction. A further advantage lies
in the possibility of transforming the nitro group in
position 7.
White solid; mp 177–178 ꢁC (EtOH) IR (cmÀ1): m 3251,
3078, 2979, 1679, 1653, 1612, 1531, 1511, 1476, 1466, 1411,
1346, 1304, 1244, 1204, 1167, 1117, 1049, 921, 836, 798,
742, 697, 521; 1H NMR (200 MHz, CDCl3): d 8.50 (d, 1H,
J = 10.2 Hz), 8.25 (dd, 1H, J = 11.7 Hz, J = 2.4 Hz),
7.34–7.06 (m, 9H), 6.76 (d, 2H, J = 8.8 Hz), 6.71 (d, 1H,
J = 11.2 Hz), 4.91 (s, 2H), 4.18 (s, 2H), 3.98 (q, 2H,
J = 7.0 Hz), 1.39 (t, 3H, J = 6.8 Hz); 13C NMR (50 MHz,
CDCl3): d 168.62, 165.35, 156.11, 146.44, 142.01, 135.36,
133.94, 130.59, 129.96, 129.84, 128.71, 127.69, 125.73,
124.69, 121.98, 114.61, 63.75, 59.60, 59.44, 50.19, 41.96,
15.01. Anal. Calcd for C25H23Cl2N3O5 (516.37): C, 58.15;
H, 4.49; N, 8.14. Found: C, 58.37; H, 4.60; N, 7.86.
Detailed experimental procedures, physical, analytical,
and spectral data of compounds 7b–k are reported in the
Supplementary data.
Acknowledgments
A.G.N. is grateful to Junta de Extremadura for a
research grant.
Supplementary data
Supplementary data associated with this article can be
12. 4-Benzyl-7-nitro-3-oxo-2,3,4,5-tetrahydrobenzo[1,4]thiaze-
pin-5-carboxylic acid N-(4-ethoxy)phenyl amide (9a): A
saturated solution of 7a (1.55 g, 3.0 mmol) in acetone was
treated with finely ground thiourea (297 mg, 3.9 mmol)
and the resulting mixture stirred for 16 h at rt. TLC showed
the absence of the starting product. Removal of the solvent
left a residue, which was treated with EtOH (25 ml) and
then with a solution of KOH (337 mg, 6.0 mmol) in water
(2 mL). The resulting mixture was refluxed for 2 h under
stirring. Removal of the solvent left a residue, which was
stirred with water (60 mL). The resulting suspension was
extracted with CHCl3 (3 · 50 mL). The combined extracts
were dried (Na2SO4) and the solvent removed to give a
residue, which was recrystallized from EtOH to afford
1.43 g (71%) of pure 9a.
References and notes
1. Review: Levai, A. J. Heterocycl. Chem. 2000, 37, 199–214.
2. Ferrari, R. Eur. Heart J. 1997, 18, A56–A70.
´
3. Amblard, M.; Daffix, I.; Bedos, P.; Berge, G.; Pruneau,
´
D.; Paquet, J.-L.; Luccarini, J.-M.; Belichard, P.; Dodey,
P.; Martinez, J. J. Med. Chem. 1999, 42, 4185–4192.
4. Huang, P.; Loew, G. H.; Funamizu, H.; Mimura, M.;
Ishiyama, N.; Hayashida, M.; Okuno, T.; Shimada, O.;
Okuyama, A.; Ikegami, S.; Nakano, J.; Inoguchi, K. J.
Med. Chem. 2001, 44, 4082–4091.
5. Lesuisse, D.; Deprez, P.; Albert, E.; Duc, T. T.; Sortais,
B.; Gofflo, D.; Jean-Baptiste, V.; Marquette, J.-P.; Schoot,
B.; Sarubbi, E.; Lange, G.; Broto, P.; Mandine, E. Bioorg.
Med. Chem. Lett. 2001, 11, 2127–2131.
White solid, mp 204.5–205.5 ꢁC. IR (cmÀ1): m 3323, 1697,
1659, 1595, 1572, 1520, 1469, 1427, 1415, 1336, 1308, 1264,
1230, 1172, 1156, 1113, 1083, 1061, 1036, 823, 758, 744,
702, 657; 1H NMR (200 MHz, CDCl3): d 8.04 (d, 1H,
J = 8.7 Hz), 7.84 (s, 1H), 7.48–7.35 (m, 6H), 7.03 (d, 2H,
J = 8.8 Hz), 6.78 (s, 1H), 6.76 (d, 2H, J = 8.8 Hz), 5.31 (d,
1H, J = 13.8 Hz), 5.04 (s, 1H), 4.26 (d, 2H, J = 15.0 Hz),
3.96 (q, 2H, J = 6.9 Hz), 3.36 (d, 1H, J = 14.5 Hz), 1.37 (t,
3H, J = 6.9 Hz); 13C NMR (50 MHz, CDCl3): d 165.88,
156.40, 155.21, 144.68, 136.46, 129.81, 129.33, 129.21,
129.11, 128.90, 127.66, 123.43, 121.26, 114.79, 66.67, 63.69,
52.34, 33.07, 14.71.
6. Narita, H.; Gaino, M.; Suzuki, T.; Kurosawa, H.; Inoue,
H.; Nagao, T. Chem. Pharm. Bull. 1990, 38, 407–410.
7. Hamanaka, E. S.; Hayward, C. M.; Hawkins, J. M. U.S.
Patent 5,770,594, 1998; Chem. Abstr. 1996, 125, 168038s.
´
´
´
´
´
8. Szabo, J.; Fodor, L.; Katocs, A; Bernath, G.; Sohar, P.
Chem. Ber. 1986, 119, 2904–2913.
9. See for example: (a) Faggi, C.; Marcaccini, S.; Pepino, R.;
Pozo, M. C. Synthesis 2002, 2756–2760; (b) Faggi, C.;
Anal. Calcd for C25H23N3O5S (477.53): C, 62.88; H, 4.85;
N, 8.80. Found: C, 62.61; H, 4.96; N, 8.99. Detailed
experimental procedures, physical, analytical, and spectral
data of compounds 9b–k are reported in the Supplemen-
tary data.
´
Garcıa-Valverde, M.; Marcaccini, S.; Pepino, R.; Pozo, M.
C. Synthesis 2003, 1553–1558; (c) Marcaccini, S.; Pepino,
´
R.; Pozo, M. C.; Basurto, S.; Garcıa-Valverde, M.;
Torroba, T. Tetrahedron Lett. 2003, 44, 3999–4001; (d)
´
Marcaccini, S.; Miguel, D.; Torroba, T.; Garcıa-Valverde,
13. The formation of the internal nucleophile represents the key
step in this synthesis. From this point of view the present
methodology is substantially analogous to those described
by Hulme and Zhu groups: (a) Tempest, P.; Ma, V.; Kelly,
M. G.; Jones, W.; Hulme, C. Tetrahedron Lett. 2001, 42,
4963–4966; (b) Tempest, P.; Pettus, L.; Gore, V.; Hulme, C.
Tetrahedron Lett. 2003, 44, 1947–1950; (c) Cristau, P.; Vors,
J.-P.; Zhu, J. Org. Lett. 2001, 3, 4079–4082.
M. J. Org. Chem. 2003, 68, 3315–3318; (e) Marcos, C. F.;
Marcaccini, S.; Pepino, R.; Polo, C.; Torroba, T. Synthesis
2003, 691; (f) Marcaccini, S.; Miliciani, M.; Pepino, R.
Tetrahedron Lett. 2005, 46, 711–713.
10. Reviews: (a) Do¨mling, A.; Ugi, I. Angew. Chem., Int. Ed.
2000, 39, 3168–3210; (b) Ugi, I.; Werner, B.; Do¨mling, A.
Molecules 2003, 8, 53–66.