Angewandte
Chemie
acetate and hexane (1:1), followed by concentration of the
collected solution and subsequent purification by column chro-
matography (silica gel, 1:15 ethyl acetate/hexane), afforded the
corresponding cycloadduct.
Received: July 1, 2005
Published online: September 1, 2005
Keywords: asymmetric catalysis · cycloaddition ·
.
hydroxy enones · Lewis acids · synthetic methods
[1] For reviews, see: a) K. V. Gothelf, K. A. Jørgensen, Chem.
Rev. 1998, 98, 863 – 909; b) K. V. Gothelf, K. A. Jørgensen,
Chem. Commun. 2000, 1449 – 1458; c) S. Kanemasa, Synlett
2002, 1371 – 1387; d) K. V. Gothelf in Cycloaddition Reac-
tions in Organic Synthesis (Eds.: S. Kobayashi, K. A.
Jørgensen), Wiley-VCH, Weinheim, 2002, pp. 211 – 247;
e) K. V. Gothelf, K. A. Jørgensen in Synthetic Applications
of 1,3-Dipolar Cycloaddition, Chemistry toward Hetero-
cycles and Natural Products, (Eds.: A. Padwa, W. H.
Pearson), Wiley, Hoboken, NJ, 2003, pp. 817 – 900.
[2] a) J. N. Martin, R. C. F. Jones in Synthetic Applications of
1,3-Dipolar Cycloaddition, Chemistry toward Heterocycles
and Natural Products, (Eds.: A. Padwa, W. H. Pearson),
Wiley, Hoboken, NJ, 2003, pp. 1 – 82; b) S. Karlsson, H.-E.
Högberg, Org. Prep. Proc. Int. 2001, 33, 103 – 172.
À
Scheme 3. Chemical elaboration of cycloadducts with detachment of the auxiliary Xc
OH. Bn=benzyl; Boc=tert-butoxycarbonyl.
dehyde 15. In all the above examples, the starting (1R)-(+)-
camphor was recovered after scission, ready for reuse. On the
other hand, the oxidative elaboration of adduct 8a gave ent-
13a along with acetone as the only by-product, whereas
hydrogenolytic opening of 8a with concomitant N-protection
(Boc) and further cleavage of the ketol afforded homoserine
derivative 16 in two high-yielding steps. Of practical interest,
both enantiomers of each isoxazolidine product are readily
accessible by appropriate choice of the corresponding
approach.
In conclusion, a’-hydroxy enones considerably expand the
range of metal-catalyzed 1,3-dipolar cycloadditions of nitro-
nes. Conditions have been set that produce the cycloadducts
with very high combined levels of regio- and stereoselectivity.
The potential of the method has been demonstrated using
camphor-derived a’-hydroxy enone 1 in combination with
catalytic Cu(OTf)2, or achiral enones 6 and 10 in combination
with the Evans bis(oxazoline)–CuII catalyst, and by the easy
elaboration of the cycloadducts to diversely functionalized di-
and trisubstituted isoxazolidines in essentially enantiopure
form.
[3] For illustrative examples using stoichiometric chiral auxil-
iaries, see: a) T. Gefflaut, U. Bauer, K. Airola, A. M. P.
Koskinen, Tetrahedron: Asymmetry 1996, 7, 3099 – 3102; b) A.
Carriere, A. Virgili, M. Figueredo, Tetrahedron: Asymmetry
1996, 7, 2793 – 2796; c) T. Tejero, A. Dondoni, I. Rojo, F. L.
Merchµn, P. Merino, Tetrahedron 1997, 53, 3301 – 3318; d) P.
Merino, S. Anoro, S. Franco, F. L. Merchµn, T. Tejero, V. Tuæón,
J. Org. Chem. 2000, 65, 1590 – 1596; e) O. Tamura, A. Kanoh, M.
Yamashita, H. Ishibashi, Tetrahedron 2004, 60, 9997 – 10003.
[4] For illustrative examples using chiral catalysts, see: a) K. V.
Gothelf, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 1998, 63,
5483 – 5488, and references therein; b) T. Saito, T. Yamada, S.
Miyazaki, T. Otani, Tetrahedron Lett. 2004, 45, 9585 – 9587; c) G.
Desimoni, G. Faita, M. Mella, M. Boiocchi, Eur. J. Org. Chem.
2005, 1020 – 1027; d) F. Viton, G. Bernardinelli, E. P. Kündig, J.
Am. Chem. Soc. 2002, 124, 4968 – 4969; e) M. Shirahase, S.
Kanemasa, Y. Oderaotoshi, Org. Lett. 2004, 6, 675 – 678; f) D.
Carmona, M. P. Lamata, F. Viguri, R. Rodríguez, L. A. Oro, A. I.
Balana, F. J. Lahoz, T. Tejero, P. Merino, S. Franco, I. Montesa, J.
Am. Chem. Soc. 2004, 126, 2716 – 2717.
[5] a) W. S. Jen, J. J. M. Wiener, D. W. C. MacMillan, J. Am. Chem.
Soc. 2000, 122, 9874 – 9875; b) S. Karlsson, H.-E. Högberg, Eur.
J. Org. Chem. 2003, 2782 – 2791.
[6] For complexes of NiII: a) H. Suga, T. Nakajima, K. Itoh, A.
Kakehi, Org. Lett. 2005, 7, 1431 – 1434; b) S. Iwasa, H. Maeda, K.
Nishiyama, S. Tsushima, Y. Tsukamoto, H. Nishiyama, Tetrahe-
dron 2002, 58, 8281 – 8287; c) S. Kanemasa, Y. Oderaotoshi, J.
Tanaka, E. Wada, J. Am. Chem. Soc. 1998, 120, 12355 – 12356;
for complexes of PdII: d) K. Hori, H. Kodama, T. Ohta, I.
Furukawa, J. Org. Chem. 1999, 64, 5017 – 5023; For complexes of
MgII and MnII: e) S. Iwasa, Y. Ishima, H. S. Widagdo, K. Aoki, H.
Nishiyama, Tetrahedron Lett. 2004, 45, 2121 – 2124; for com-
plexes of lanthanides: f) H. Kodama, J. Ito, K. Hori, T. Ohta, I.
Furukawa, J. Organomet. Chem. 2000, 603, 6 – 12; g) S. Kobaya-
shi, M. Kawamura, J. Am. Chem. Soc. 1998, 120, 5840 – 5841; for
complexes of CuII: h) M. P. Sibi, Z. Ma, C. P. Jasperse, J. Am.
Chem. Soc. 2004, 126, 718 – 719; for complexes of CoII: i) Z.-Z.
Huang, Y.-B. Kang, J. Zhou, M.-C Ye, Y. Tang, Org. Lett. 2004, 6,
1677 – 1679.
Experimental Section
General procedure for CuII/tBOX (7)-catalyzed 1,3-dipolar cyclo-
additions of nitrones to 6: A flame-dried flask was charged with 2-
hydroxy-2-methylpent-4-en-3-one (6; 0.114 g, 1.0 mmol) and dry
CH2Cl2 (1.5 mL) under N2. The solution was cooled to À208C, and
then freshly dried, powdered molecular sieves (4 ; 250 mg), a
solution of the corresponding nitrone (0.5 mmol) in CH2Cl2 (1 mL),
and a solution of 7 in CH2Cl2 (0.05m, 1 mL) were added consecutively.
The resulting mixture was stirred at À208C until completion of
reaction. The reaction mixture was then diluted with 5 mL of ethyl
acetate/hexane (1:1), and the solution was directly applied to a short
column of silica gel (1.5 cm 1.5 cm). Elution with a mixture of ethyl
Angew. Chem. Int. Ed. 2005, 44, 6187 –6190
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6189