5810
D. E. Kaelin et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5806–5811
Table 5. PK data for 28
Acknowledgments
Species
Selected pharmacokinetic parameters (1/2 mpk iv/po)
We are grateful to D. Hora, J. Fenyk-Melody, I. Capod-
anno, P. Cunningham, M. Donnelly, J. Hausamann, C.
Nunes, X. Shen, J. Strauss, and K. Vakerich for in vivo
pharmacokinetic studies.
AUCn
(lM h)
Clp
(mL/min/kg)
Cmax
(lM)
t1/2
F
(h)
(%)
Rat
Doga
Rhesus
4.4
46
5.3
3.3
16
4.1
3.9
4.1
63
0.94
5.6
100
97
6.5
2.8
a po dose—0.5 mpk.
References and notes
1. For recent GLP-1 references, see: (a) Holst, J. J. Curr. Opin.
Endocrin. Diabetes 2005, 12, 56; (b) Knudsen, L. B. J. Med.
Chem. 2004, 47, 4128; (c) Vahl, T. P.; D’Alessio, D. A.
Expert Opin. Invest. Drugs 2004, 13, 177, and references
therein.
2. For reviews on DPP-4 inhibitors, see: (a) Nielson, L. L.
Drug Discovery Today 2005, 10, 703; (b) Augustyns, K.;
Van der Veken, P.; Haemers, A. Expert Opin. Ther. Patents
2005, 15, 1387; (c) Mentlein, R. Expert Opin. Invest. Drugs
2005, 14, 57; (d) Weber, A. E. J. Med. Chem. 2004, 47,
4135; (e) Augustyns, K.; Van der Veken, P.; Senten, K.;
Haemers, A. Expert Opin. Ther. Patents 2003, 13, 499, and
references therein.
400
300
200
100
vehicle
X:
0.01 mg/kg
0.03 mg/kg
0.1 mg/kg
0.3 mg/kg
control
0
pre
0
20 40 60
120
time (min)
Figure 2. Effects of 28 on glucose levels after an oral glucose tolerance
test in lean mice.
3. Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher,
M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.;
Lyons, K.; Marsillio, F.; McCann, M. E.; Patel, R. A.;
Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.;
Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.;
Weber, A. E. J. Med. Chem. 2005, 48, 141.
4. (a) Xu, J.; Wei, L.; Mathvink, R.; He, J.; Park, Y.-J.; He,
H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.;
Wu, J. K.; Thornberry, N. A.; Weber, A. E. Bioorg. Med.
Chem. Lett. 2005, 15, 2533; (b) Edmondson, S. D.;
Mastracchio, A.; Duffy, J. L.; Eiermann, G. J.; He, H.;
Ita, I.; Leiting, B.; Leone, J. F.; Lyons, K. A.; Makarewicz,
A. M.; Patel, R. A.; Petrov, A.; Wu, J. K.; Thornberry, N.
A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2005, 15, 3048;
(c) Edmondson, S. D.; Mastracchio, A.; Mathvink, R. J.;
He, J.; Harper, B.; Park, Y.-J.; Beconi, M.; Di Salvo, J.;
Eiermann, G. J.; He, H.; Leiting, B.; Leone, J. F.; Levorse,
D. A.; Lyons, K.; Patel, R. A.; Patel, S. B.; Petrov, A.;
Scapin, G.; Shang, J.; Sinha Roy, R.; Smith, A.; Wu, J. K.;
Xu, S.; Zhu, B.; Thornberry, N. A.; Weber, A. E. J. Med.
Chem. 2006, 49, 3614; (d) Parmee, E. R.; He, J.; Mastrac-
chio, A.; Edmondson, S. D.; Colwell, L.; Eiermann, G.;
Feeney, W. P.; Habulihaz, B.; He, H.; Kilburn, R.; Leiting,
B.; Lyons, K.; Marsilio, F.; Patel, R. A.; Petrov, A.; Di
Salvo, J.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.
Bioorg. Med. Chem. Lett. 2004, 14, 43; (e) Caldwell, C. G.;
Chen, P.; He, J.; Parmee, E. R.; Leiting, B.; Marsilio, F.;
Patel, R. A.; Wu, J. K.; Eiermann, G. J.; Petrov, A.; He, H.;
Lyons, K. A.; Thornberry, N. A.; Weber, A. E. Bioorg.
Med. Chem. Lett. 2004, 14, 1265.
5. Lankas, G. R.; Leiting, B.; Sinha Roy, R.; Eiermann, G. J.;
Biftu, T.; Cahn, C.-C.; Edmondson, S. D.; Feeney, W. P.;
He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.;
Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.; Reigle,
L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.;
Weber, A. E.; Thornberry, N. A. Diabetes 2005, 54, 2988.
6. Duffy, J. L.; Kirk, B. A.; Wang, L.; Eiermann, G. J.; He,
H.; Leiting, B.; Lyons, K. A.; Patel, R. A.; Patel, S. B.;
Petrov, A.; Scapin, G.; Wu, J. K.; Thornberry, N. A.;
Weber, A. E. Bioorg. Med. Chem. Lett. 2007, 17, 2879.
7. For assay conditions for DPP-4 inhibition, see: (a) Leiting,
B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel, R. A.;
Craik, C. S.; Ellman, J. A.; Cummings, R. T.; Thornberry,
N. A. J. Biochem. 2003, 371, 525; (b) For assay conditions
for DPP-8 and DPP-9, see Ref. 5.
Figure 3. Inhibitors 20 (cyan) and 28 (yellow) bound to DPP-4.
Interactions of the inhibitors with DPP-4 are shown as dotted red lines.
substituents in these inhibitors. The more potent diaste-
reomer of each pair in Tables 3 and 4 is presumed to be
trans by analogy. The interactions between 20/28 and
DPP-4 are similar to those seen with related com-
pounds.4c It is noteworthy that the heterocycle in 28 is
capable of participating in a hydrogen bonding interac-
tion with Arg358 whereas the heterocycle in 20 cannot.
This interaction appears to have no impact on intrinsic
potency.
In conclusion, the hybridization of DPP-4 inhibitors 3
and 4 gave a new class of compounds that effectively
incorporated the desirable properties of each. The 4-aryl
and heteroarylcyclohexylalanines described are highly
potent and selective over DPP-8 and DPP-9. One mem-
ber of this new class, 28, has improved selectivity over
hERG compared to 1 and an improved pharmacoki-
netic profile relative to 4. Compound 28 showed good
efficacy in a murine OGTT experiment.