860
B. Thierry et al.
LETTER
J = 7 Hz), 6.53 (m, 1 H), 5.67 (d, 1 H, J = 18 Hz), 5.18 (d, 1
H, J = 11 Hz), 3.81 (s, 3 H), 3.27 (m, 1 H), 2.77 (m, 1 H),
2.62 (m, 3 H), 1.85 (m, 1 H), 1.77 (s, 1 H), 1.48–1.18 (m, 5
H), 1.07 (m, 1 H), 0.73 (t, 3 H, J = 7 Hz). 13C NMR: d =
165.7, 158.3, 147.8, 145.1, 144.4, 142.8, 136.1, 132.1,
130.3, 129.1, 127.4, 126.6, 122.3, 119.0, 117.3, 101.8, 74.5,
59.8, 55.9, 51.1, 50.3, 37.7, 27.5, 26.5, 25.8, 23.8, 12.3. A
solution of O9-(4-vinylbenzoyl dihydroquinine (2.19 mmol)
and 2,2¢-azobisisobutyronitrile (7.0 mg, 0.04 mmol, 0.02
equiv) in dry benzene (20 mL) was refluxed under nitrogen
atmosphere. After 48 h, the solution was cooled to r.t.,
concentrated to about 5 mL and poured onto Et2O. The
precipitate was filtered, washed with EtOH and dried to
afford the Poly [O9-(4-Vinylbenzoyl) dihydroquinine]:
Yield = 60%. 1H NMR: d = 8.57 (m, 1 H), 7.77 (m, 3 H),
7.31 (m, 1 H), 7.13 (m, 2 H), 6.59 (m, 2 H), 3.76 (s, 3 H),
3.17–2.88 (m, 4 H), 2.48 (m, 1 H), 2.16 (m, 1 H), 1.52–1.01
(m, 11 H), 0.58 (m, 3 H). 13C NMR: d = 167.0, 158.3, 147.8,
146.9, 143.2, 132.2, 128.3, 128.5, 128.2, 127.1, 122.6,
122.5, 118.7, 101.7, 74.9, 59.5, 59.4, 58.6, 58.2, 43.2, 37.6,
29.1, 28.1, 28.0, 25.7, 22.7, 12.4. [a]D23 +197.2 (c 1.21,
CHCl3). Anal. Calcd for C29H32N2O3: C, 76.03; H, 7.06; N,
6.14; O, 10.51. Found: C, 76.33; H, 7.33; N, 5.87; O, 10.47.
(8) (a) Hermann, K.; Wynberg, H. Helv. Chim. Acta 1977, 60,
2208. (b) Aglietto, M.; Chiellini, E.; D’Antone, S.; Ruggeri,
G.; Solaro, R. Pure Appl. Chem. 1988, 60, 415.
References
(1) (a) Muñiz, K. Angew. Chem. Int. Ed. 2001, 40, 1653.
(b) Muñiz, K. Organic Synthesis Highlights, Vol. 5;
Schmalz, H.-G.; Wirth, T., Eds.; Wiley-VCH: Weinheim,
2003, 201–209.
(2) (a) Cahard, D.; Audouard, C.; Plaquevent, J. C.; Roques, N.
Org. Lett. 2000, 2, 3699. (b) Cahard, D.; Audouard, C.;
Plaquevent, J. C.; Toupet, L.; Roques, N. Tetrahedron Lett.
2001, 42, 1867. (c) Mohar, B.; Baudoux, J.; Plaquevent, J.
C.; Cahard, D. Angew. Chem. Int. Ed. 2001, 40, 4214.
(d) Baudequin, C.; Plaquevent, J. C.; Audouard, C.; Cahard,
D. Green Chem. 2002, 4, 584. (e) Zoute, L.; Audouard, C.;
Plaquevent, J. C.; Cahard, D. Org. Biomol. Chem. 2003, 1,
1833.
(3) For a similar approach by means of [N-F]+ reagents, see:
(a) Shibata, N.; Suzuki, E.; Takeuchi, Y. J. Am. Chem. Soc.
2000, 122, 10728. (b) Shibata, N.; Suzuki, E.; Asahi, T.;
Shiro, M. J. Am. Chem. Soc. 2001, 123, 7001. (c) Shibata,
N.; Ishimaru, T.; Suzuki, E.; Kirk, K. L. J. Org. Chem. 2003,
68, 2494. (d) By means of transition metal catalysts:
Hintermann, L.; Togni, A. Angew. Chem. Int. Ed. 2000, 39,
4359. (e) See also: Hamashima, Y.; Yagi, K.; Takano, H.;
Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
14530. (f) See further: Hamashima, Y.; Takano, H.; Hotta,
D.; Sodeoka, M. Org. Lett. 2003, 5, 3225. (g) By phase-
transfer catalysis: Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4,
545. (h) By fluorodesilylation: Greedy, B.; Paris, J. M.;
Vidal, T.; Gouverneur, V. Angew. Chem. Int. Ed. 2003, 42,
3291.
(c) Dannelli, T.; Annunziata, R.; Benaglia, M.; Cinquini, M.;
Cozzi, F.; Tocco, G. Tetrahedron: Asymmetry 2003, 14, 461.
(9) Heidelberger, M.; Jacobs, W. A. J. Am. Chem. Soc. 1919, 41,
817.
(4) (a) Thierry, B.; Plaquevent, J. C.; Cahard, D. Tetrahedron:
Asymmetry 2001, 12, 983. (b) Thierry, B.; Perrard, T.;
Audouard, C.; Plaquevent, J. C.; Cahard, D. Synthesis 2001,
11, 1742. (c) Thierry, B.; Plaquevent, J. C.; Cahard, D.
Tetrahedron: Asymmetry 2003, 14, 1671.
(5) (a) Banks, R. E.; Tsiliopoulos, E. J. Fluorine Chem. 1986,
34, 281. (b) Umemoto, T.; Nagayoshi, M.; Adachi, K.;
Tomizawa, G. J. Org. Chem. 1998, 63, 3379.
(10) Braje, W.; Frackenpohl, J.; Langer, P.; Hoffmann, H. M. R.
Tetrahedron 1998, 54, 3495.
(11) Braje, W. M.; Frackenpohl, J.; Schrake, O.; Wartchow, R.;
Beil, W.; Hoffmann, H. M. R. Helv. Chim. Acta 2000, 83,
777.
(12) Baudequin, C.; Loubassou, J. F.; Plaquevent, J. C.; Cahard,
D. J. Fluorine Chem. 2003, 122, 189.
(13) Typical Experimental Procedure: To the poly [O9-(4-VB)-
DHQN] (0.25 mmol, 114.15 mg) in MeCN (1 mL) was
added under nitrogen atmosphere N-
(6) Song, C. E.; Roh, E. J.; Lee, S.-g.; Kim, I. O. Tetrahedron:
Asymmetry 1995, 6, 2687.
(7) Experimental Procedure for the Preparation of Poly [O9-
(4-Vinylbenzoyl) Dihydroquinine] (PS-CA Type I
Soluble): A solution of 4-vinylbenzoic acid (500 mg, 3.38
mmol, 1 equiv) in thionyl chloride (4.92 mL, 67.6 mmol, 20
equiv) was refluxed for 1 h. After cooling the mixture to r.t.,
the excess of thionyl chloride was removed by concentration
under reduced pressure to afford 4-vinylbenzoyl chloride
(562.5 mg, 3.38 mmol, brown solid). To this solid was
added, under nitrogen at r.t., 20 mL of freshly distilled
CH2Cl2, the dihydroquinine (3.38 mmol, 1.10 g, 1 equiv) and
Et3N (470 mL, 3.38 mmol, 1 equiv). The mixture was then
stirred for 15 h at r.t. Then, the reaction was quenched with
H2O, and the organic layer was washed with 1 M Na2CO3
solution, brine, dried and concentrated under reduced
pressure. The solid was then purified by flash
fluorobenzenesulfonimide (74.4 mg, 0.224 mmol, 1 equiv),
and the mixture was stirred for 1 h at r.t. Then, the solution
containing the N-fluoro-bound reagent was added to a
solution of trimethylsilyl enol ether 1b (0.25 mmol, 73.7 mg,
1 equiv) in THF (1 mL) at –40 °C within 2 h. The solution
was stirred for 16 h, then H2O was added (9 mM, 2 equiv).
The solution was concentrated under reduced pressure to a
saturated solution and Et2O was added (10 mL) to cause the
heterogenization. The polymer was recovered by
centrifugation and extraction of the supernatant liquid. A
second similar purification procedure was conducted after
dissolution of the polymer in the minimun amount of
CH2Cl2. The filtrates were then concentrated under reduced
pressure and purified by flash chromatography
(cyclohexane–Et2O, 9:1), leading to the fluorinated ketone
2b (see ref. 2d for spectroscopic data). The enantiomeric
excess was then determined by HPLC using Chiracel OB
column.
chromatography (acetone–EtOAc, 4:1) to afford a white
solid. O9-(4-Vinylbenzoyl) Dihydroquinine: Yield = 59%.
1H NMR: d = 8.59 (d, 1 H, J = 4.5 Hz), 7.90 (m, 3 H), 7.40
(s, 1 H), 7.23 (m, 2 H), 7.20 (d, 2 H, J = 2 Hz), 6.65 (d, 1 H,
Synlett 2004, No. 5, 856–860 © Thieme Stuttgart · New York