Synthesis of Ovalicin Starting from
D-Mannose
Shunya Takahashi,* Nobuyuki Hishinuma,
Hiroyuki Koshino, and Tadashi Nakata
RIKEN (The Institute of Physical and Chemical Research),
Wako-shi, Saitama, 351-0198, Japan
Received August 10, 2005
FIGURE 1. Structures of Anti-Angiogenesis Inhibitors.
al. modified the original total synthesis8a of racemic 2 to
develop an elegant asymmetric synthesis of 2,8b while
Bath, Barton, and co-workers reported the total synthesis
of 2 using L-quebrachitol as a chiral pool.9 In addition, a
formal total synthesis of 2 was also disclosed.10 However,
more efficient syntheses of 2 and its derivatives are still
required for further studies on detailed examination of
its biological activity with significant therapeutic poten-
tial.11 In connection with our synthetic studies12 on
heterocyclic natural products based on the “Chiron”
approach,13 we describe herein an efficient synthesis of
2 starting from D-mannose.
A new synthesis of epoxyketone 22 is described that is a key
intermediate in Barton’s synthesis of ovalicin (2), a powerful
anti-angiogenetic inhibitor. The key process for the construc-
tion of 22 was ring-closing metathesis of olefins 11 and 12
obtained from 2,3:5,6-di-O-isopropylidene-R-D-mannofura-
nose (4) and regioselective desilylation of tri-TES ether 19.
Furthermore, an alternative stereoselective route from 22
into 2 has also been developed, and the overall yield of 2
from 4 was 10.0%.
(4) For synthetic approaches to fumagillin, see the following: (a)
Corey, E. J.; Snider, B. B. J. Am. Chem. Soc. 1972, 94, 2549-2550. (b)
Kim, D.; Ahn, S. K.; Bae, H.; Choi, W. J.; Kim, H. S. Tetrahedron Lett.
1997, 38, 4437-4440. (c) Taber, D. F.; Christos, T. E.; Rheingold, A.
L.; Guzei, I. A. J. Am. Chem. Soc. 1999, 121, 5589-5590. (d) Vosburg,
D. A.; Weiler, S.; Sorensen, E. J. Angew. Chem., Int. Ed. 1999, 38,
971-974. (e) Boiteau, J.-G.; Van de Weghe, P.; Eustache, J. Org. Lett.
2001, 3, 2737-2740. (f) Hutchings, M.; Moffat, D.; Simpkins, N. S.
Synlett 2001, 661-663. (g) Vosburg, D. A.; Weiler, S.; Sorensen, E. J.
Chirality 2003, 15, 156-166. (h) Bedel, O.; Haudrechy, A.; Langlois,
Y. Eur. J. Org. Chem. 2004, 3813-3819. (i) Yamaguchi, J.; Sumiya,
T.; Hibino, K.; Shoji, M.; Kakeya, H.; Osada, H.; Hayashi, Y. In
Abstracts of Papers, 46th Tennen Yuki Kagobutu Toronkai, Hiroshima,
Japan, Oct. 7, 2004; pp 563-568. (j) For a synthesis of FR65814, see
the following: Amano, S.; Ogawa, N.; Ohtsuka, M.; Chida, N. Tetra-
hedron 1999, 55, 2205-2224.
Angiogenesis, the growth and development of new
capillary blood vessels, is a process that takes place
normally during wound healing. Abnormal angiogenesis
is now recognized as a feature of many proliferative
diseases.1 For example, the growth and metastatic spread
of solid tumors is known to be dependent on angiogenesis.
This suggests that inhibition of angiogenesis is a promis-
ing approach for the treatment of cancer.2 In 1990, an
antibiotic, fumagillin (1),3,4 was reported to have potent
anti-angiogenetic activity (Figure 1),5 but its high toxicity
and instability made the application of 1 to an anti-cancer
drug difficult. As a result of further extensive studies,
ovalicin (2), which was first isolated from cultures of
Pseudorotium ovalis Stolk,6 was found to be nontoxic,
noninflammatory, and more potent than 1; the potency
was the same as that of the most active analogue, AGM-
1470 (3),5 which is being evaluated in phase III clinical
trials as a potential cancer drug.7 These positive observa-
tions have stimulated synthetic chemists, and Corey et
(5) Ingber, D.; Fujita, T.; Kishimoto, S.; Sudo, K.; Kanamaru, T.;
Brem, H.; Folkman, J. Nature 1990, 348, 555-557.
(6) (a) Sigg, H. P.; Weber, H. P. Helv. Chim. Acta 1968, 51, 1395-
1408. (b) Sassa, T.; Kaise, H.; Munakata, K. Agric. Biol. Chem. 1970,
34, 649-651. (c) Bollinger, P.; Sigg, H. P.; Weber, H. P. Helv. Chim.
Acta 1973, 56, 78-79.
(7) (a) Marui, S.; Itoh, F.; Kozai, Y.; Sudo, K.; Kishimoto, S. Chem.
Pharm. Bull. 1992, 40, 96-101. (b) Dezube, B. J.; Von Roenn, J. H.;
Holden-Wiltse, J.; Cheung, T. W.; Remick, S. C.; Cooley, T. P.; Moore,
J.; Sommadossi, J. P.; Shriver, S. L.; Suckow, C. W.; Gill, P. S. J. Clin.
Oncol. 1998, 16, 1444-1449. (c) Stadler, W. M.; Kuzel, T.; Shapiro,
C.; Sosman, J.; Clark, J.; Vogelzang, N. J. J. Clin. Oncol. 1999, 17,
2541-2545. (d) Logothetis, C. J.; Wu, K. K.; Finn, L. D.; Daliani, D.;
Figg, W.; Ghaddar, H.; Gutterman, J. U. Clin. Cancer Res. 2001, 7,
1198-1203.
* Address correspondence to this author. Phone: +81-48-467-9223.
Fax: +81-48-462-4627.
(1) (a) Folkman, J.; Klagsbrun, M. Science 1987, 235, 442-447. (b)
Folkman, J. Nature Med. 1995, 1, 27-31. (c) Hanahan, D.; Folkman,
J. Cell 1996, 86, 353-364.
(2) (a) Folkman, J. N. Engl. J. Med. 1971, 285, 1182-1186. (b)
Auerbach, W.; Auerbach, R. Pharmacol. Ther. 1994, 63, 265-311. (c)
Giannis, A.; Rubsam, F. Angew. Chem., Int. Ed. 1997, 36, 588-590.
(d) Powell, D.; Skotnicki, J.; Upeslacis, J. Annu. Rep. Med. Chem. 1997,
32, 161-170.
(3) (a) Eble, T. E.; Hanson, F. R. Antibiot. Chemother. 1951, 1, 54-
58. (b) McCowen, M. C.; Callender, M. E.; Lawlis, J. F., Jr. Science
1951, 113, 202-203. (c) Katznelson, H.; Jamieson, C. A. Science 1952,
115, 70-71. (d) Killough, J. H.; Magill, G. B.; Smith, R. C. Science
1952, 115, 71-72.
(8) (a) Corey, E. J.; Dittami, J. P. J. Am. Chem. Soc. 1985, 107, 256-
257. (b) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc.
1994, 116, 12109-12110.
(9) (a) Bath, S.; Billington, D. C.; Gero, S. D.; Quiclet-Sire, B.;
Samadi, M. J. Chem. Soc., Chem. Commun. 1994, 1495-1496. (b)
Barton, D. H. R.; Bath, S.; Billington, D. C.; Gero, S. D.; Quiclet-Sire,
B.; Samadi, M. J. Chem. Soc., Perkin Trans. 1 1995, 1551-1558.
(10) Barco, A.; Benetti, S.; De Risi, C.; Marchetti, P.; Pollini, G. P.;
Zanirato, V. Tetrahedron: Asymmetry 1998, 9, 2857-2864.
(11) Mazitschek, R.; Huwe, A.; Giannis, A. Org. Biomol. Chem. 2005,
3, 2150-2154 and references therein.
10.1021/jo051686m CCC: $30.25 © 2005 American Chemical Society
Published on Web 10/20/2005
10162
J. Org. Chem. 2005, 70, 10162-10165