C O M M U N I C A T I O N S
Scheme 2. Short, Enantioselective Total Syntheses of (+)-1 and (-)-2a
a Reagents and conditions: (a) THF, TEA (1.0 equiv), t-BuOCl (1.7 equiv), 0 °C, 10 min; then 40:20:1 MeOH:H2O:AcOH, 5 min, 41%, 1:1 mixture of
14 and 15; (b) THF, TEA (1.0 equiv), t-BuOCl (1.5 equiv), -30 °C, 1 min; then 95:4:1 THF:H2O:TFA, -30 to 0 °C, 5 min, 28%, 10:1 mixture of 1 and
3-epi-1. TFA ) trifluoroacetic acid.
(+)-8 was treated with t-BuOCl followed by dilute acid (gently
heated in order to dissolve the substrate) to furnish spirooxindole
14 and enone 15 as a 1:1 mixture in 41% yield (unoptimized). The
stereochemistry of 14 (colorless needles, mp 197-198 °C) was
verified by X-ray crystallographic analysis (Scheme 2). Given the
aforementioned considerations, it is remarkable that this reaction
occurs at low temperature and within minutes. Although ketone
14 represents a potentially viable intermediate to complete the
synthesis of 1, attention was returned to fischerindole I in the hope
that it could be directly converted to 1. After much exploration,
conditions were developed for the conversion of (-)-2 to (+)-1.
Exposure of (-)-2 to 1.5 equiv of freshly prepared t-BuOCl in THF
at -30 °C for 1 min followed by removal of solvent in vacuo,
immediate dissolution in THF/H2O/TFA (95:4:1),15 and warming
to 0 °C led to a 10:1 mixture of (+)-1 and 3-epi-1 (tentatively
assigned) in 28% yield (unoptimized). Synthetic (+)-1 was
spectroscopically identical to that reported [[R]D +160 (CH2Cl2, c
0.02), nat. [R]D + 377 (CH2Cl2, c 0.078)], thus confirming its
unusual structure and absolute configuration. The remarkable ease
with which this ring contraction takes place suggests that Nature
may be employing a similar strategy to access 1.
Eli Lilly, GlaxoSmithKline, Roche, the Searle Scholarship Fund,
and the NSF (predoctoral fellowship to J.M.R.).
Supporting Information Available: Detailed experimental pro-
cedures, copies of all spectral data, and full characterization. This
References
(1) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson,
G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc.
1994, 116, 9935-9942.
(2) Studies toward the welwitindolinones: (a) Wood, J. L.; Holubec, A. A.;
Stoltz, B. M.; Weiss, M. M.; Dixon, J. A.; Doan, B. D.; Shamji, M. F.;
Chen, J. M.; Heffron, T. P. J. Am. Chem. Soc. 1999, 121, 6326-6327.
(b) Holubec, A. A. Ph.D. Thesis, Yale University, 2000. (c) Weiss, M.
M. Ph.D. Thesis, Yale University, 2001. (d) Deng, H. Ph.D. Thesis,
University of California, Santa Cruz, 2001. (e) Huang, S.-T. Ph.D. Thesis,
Brandeis University, 2001. (f) Deng, H.; Konopelski, J. P. Org. Lett. 2001,
3, 3001-3004. (g) Jung, M. E.; Slowinski, F. Tetrahedron Lett. 2001,
42, 6835-6838. (h) Alvarado, P. L.; Garc´ıa-Granda, S.; AÄ lvarez-Ru´a, C.;
Avendan˜o, C. Eur. J. Org. Chem. 2002, 1702-1707. (i) Ready, J. M.;
Reisman, S. E.; Hirata, M.; Weiss, M. M.; Tamaki, K.; Ovaska, T. V.;
Wood, J. L. Angew. Chem., Int. Ed. 2004, 43, 1270-1272. (j) MacKay,
J. A.; Bishop, R. L.; Rawal, V. H. Org. Lett. 2005, 7, 3421-3424. (k)
Baudoux, J.; Blake, A. J.; Simpkins, N. S. Org. Lett. 2005, 7, 4087-4089.
(3) (a) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450-
7451. (b) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed.
2005, 44, 609-612.
Aside from the brevity (seven, eight, and nine steps to 2, 1, and
3, respectively, from carvone oxide) and stereochemical control of
the current syntheses, there are a number of prominent features:
(a) application of the powerfully simplifying direct carbonyl-indole
coupling reaction (6 f 5);3 (b) two-step construction of the
challenging quaternary center and adjacent chlorine atom common
to this family of natural products from carvone oxide; (c) a position-
selective tandem dehydrogenation/dehydration sequence (11 f 2);
(d) an exceedingly facile oxidative ring contraction (2 f 1); (e)
experimental evidence for an alternative biogenetic hypothesis for
this family of alkaloids; and (f) absence of protecting groups and
excessive oxidation state manipulations.
Acknowledgment. This work is dedicated to Professor Albert
Eschenmoser on the occasion of his 80th birthday. We thank Dr.
D. H. Huang and Dr. L. Pasternack for NMR spectroscopic
assistance, and Dr. G. Siuzdak and Dr. Raj Chadha for mass
spectrometric and X-ray crystallographic assistance, respectively.
We are grateful to Biotage for a generous donation of microwave
process vials used in this study. Financial support for this work
was provided by The Scripps Research Institute, Amgen, DuPont,
(4) Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1953, 75, 2572-2576.
(5) For the sole example of spirocyclobutane formation, see: Wenkert, E.;
Moeller, P. D. R.; Piettre, S. R.; McPhail, A. T. J. Org. Chem. 1987, 52,
3404-3409.
(6) For a mechanistically related oxidative ring contraction that furnishes a
strained â-lactam, see: Baran, P. S.; Shenvi, R. A.; Mitsos, C. A. Angew.
Chem., Int. Ed. 2005, 44, 3714-3717.
(7) For example, see: (a) Gorthey, L. A.; Vairamani, M.; Djerassi, C. J. Org.
Chem. 1985, 50, 4173-4182. (b) Albone, K. S.; Macmillan, J.; Pitt, A.
R.; Willis, C. L. Tetrahedron 1986, 42, 3203-3214.
(8) (a) Wender, P. A.; Erhardt, J. M.; Letendre, L. J. J. Am. Chem. Soc. 1981,
103, 2114-2116. (b) Erhardt, J. M. Ph.D. Thesis, Harvard University,
1982.
(9) Fukuyama, T.; Chen, X. J. Am. Chem. Soc. 1994, 116, 3125-3126.
(10) Smyth, T. P.; Corby, B. W. Org. Proc. Res. DeV. 1997, 1, 264-267 and
references therein.
(11) Vaillancourt, V.; Albizati, K. F. J. Am. Chem. Soc. 1993, 115, 3499-3502.
(12) 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride: De
Luca, L.; Giacomelli, G.; Porcheddu, A.; Salaris, M. Synlett 2004, 14,
2570-2572.
(13) Creedon, S. M.; Crowley, H. K.; McCarthy, D. G. J. Chem. Soc., Perkin
Trans. 1 1998, 1015-1017.
(14) The stereochemistry of the C-3 chlorine is inferred, as shown in Scheme
1, but has not been confirmed.
(15) Cushing, T. D.; Sanz-Cervera J. F.; Williams, R. M. J. Am. Chem. Soc.
1996, 118, 557-579.
JA056171R
9
15396 J. AM. CHEM. SOC. VOL. 127, NO. 44, 2005