3 For selected examples of the A3 reactions, see: (a) C. Wei, L. Zhang
and C.-J. Li, Synlett, 2004, 1472; (b) M. K. Patil, M. Keller,
B. M. Reddy, P. Pale and J. Sommer, Eur. J. Org. Chem., 2008,
4440; (c) X. Zhang and A. Corma, Angew. Chem., Int. Ed., 2008,
47, 4358; (d) Y. Zhang, P. Li, M. Wang and L. Wang, J. Org.
Chem., 2009, 74, 4364; (e) N. Gommermann, C. Koradin,
K. Polborn and P. Knochel, Angew. Chem., Int. Ed., 2003,
42, 5763; (f) T. F. Knopfel, P. A. Aschwanden, T. Ichikawa,
T. Watanabe and E. M. Carreira, Angew. Chem., Int. Ed., 2004,
43, 5971; (g) K. A. Bisai and V. K. Singh, Org. Lett., 2006, 8, 2405.
4 For the iron-catalyzed A3 reaction, see: (a) P. Li, Y. Zhang and
L. Wang, Chem.–Eur. J., 2009, 15, 2045; (b) W.-W. Chen,
R. V. Nguyen and C.-J. Li, Tetrahedron Lett., 2009, 50, 2895;
(c) T. Zeng, W.-W. Chen, C. M. Cirtiu, A. Moores, G. Song and
C.-J. Li, Green Chem., 2010, 12, 570.
5 C. Wei, Z. Li and C.-J. Li, Org. Lett., 2003, 5, 4473.
6 C. Wei and C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584.
7 V. K. Y. Lo, Y. Liu, M. K. Wong and C. M. Che, Org. Lett., 2006,
8, 1529.
8 For other examples of the A3 reactions, see: (a) L. Shi, Y.-Q. Tu,
M. Wang, F.-M. Zhang and C.-A. Fan, Org. Lett., 2004, 6, 1001;
(b) H. Z. S. Huma, R. Halder, S. S. Karla, J. Das and J. Iqbal,
Tetrahedron Lett., 2002, 43, 6485; (c) G. W. Kabalka, L. Wang and
R. M. Pagni, Synlett, 2001, 676; (d) C. Wei and C.-J. Li, J. Am.
Chem. Soc., 2002, 124, 5638; (e) C. Wei, J. T. Mague and C.-J. Li,
Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5749; (f) F. Colombo,
M. Benaglia, S. Orlandi and F. Usuelli, J. Mol. Catal. A: Chem.,
2006, 260, 128; (g) N. Gommermann and P. Knochel, Chem.–Eur. J.,
2006, 12, 4380.
9 (a) C. Fischer and E. M Carreira, Org. Lett., 2001, 3, 4319;
(b) S. Sakaguchi, T. Kubo and Y. Ishii, Angew. Chem., Int. Ed.,
2001, 40, 2534; (c) S. Sakaguchi, T. Mizuta, M. Furuwan, T. Kubo
and Y. Ishii, Chem. Commun., 2004, 1638.
10 P. Li and L. Wang, Chin. J. Chem., 2005, 23, 1076.
11 C.-J. Li and C. Wei, Chem. Commun., 2002, 2689.
Scheme 2 Proposed reaction mechanism for the AHA coupling reaction.
this FeCl3 catalyzed AHA reaction could be a homogeneous
catalytic process. The catalytic cycle could start via the activa-
tion of the terminal alkyne C–H bond promoted by FeCl2 in
conjunction with TMG with the generation of a Fe-acetylide
intermediate A, which is considered to be the active nucleophilic
species. Then, the intermediate A reacts with CH2Cl2 to form
the iron(III) species B which further goes through a reductive
elimination to afford the propargylchloride C and regenerate
FeCl2. Finally, the reaction of C with a secondary amine in the
presence of TMG could furnish the propargylamine product.
As a result, a base like TMG would play a dual role including
co-activation of alkynyl C–H through deprotonation and trap-
ping the formed HCl to promote the reaction.
12 For an Au-catalyzed AHA reaction, see: D. Aguilar, M. Contel
and E. P. Urriolabeitia, Chem.–Eur. J., 2010, 16, 9287.
13 For a Cu-catalyzed AHA reaction, see: (a) D.-Y. Yu and
Y.-G. Zhang, Adv. Synth. Catal., 2011, 353, 163; (b) Z.-W. Lin,
D.-Y. Yu and Y.-G. Zhang, Tetrahedron Lett., 2011, 52, 4967.
14 For an In-catalyzed AHA reaction, see: M. Rahman, A. K. Bagdi,
A. Majee and A. Hajra, Tetrahedron Lett., 2011, 52, 4437.
In conclusion, we have developed an economical and prac-
tical protocol for facile synthesis of propargylic amines through
an iron(III)-catalyzed three-component coupling reaction of
aromatic terminal alkynes, CH2Cl2 and aliphatic secondary
amines. Notably, in situ IR spectroscopic investigation strongly
suggests that FeCl3 could activate the alkynyl C–H bond in
combination with TMG as a base. The study of the reactive
iron-acetylide intermediate would be of vital importance for the
continuing evolution of iron catalyzed reactions for direct C–C
bond formation through C–H bond activation.
15 For reviews on iron catalysis, see: (a) C. Bolm, J. Legros, J. Le Paih and
L. Zani, Chem. Rev., 2004, 104, 6217; (b) B. D. Sherry and A. Furstner,
¨
Acc. Chem. Res., 2008, 41, 1500; (c) A. Furstner and R. Martin, Chem.
¨
Lett., 2005, 624; (d) Iron Catalysis in Organic Chemistry: Reactions
and Applications, ed. B. Plietker, Wiley-VCH, Weinheim, Germany,
2008; (e) S. Enthaler, K. Junge and M. Beller, Angew. Chem., Int. Ed.,
2008, 47, 3317; (f) A. Correa, O. G. Mancheno and C. Bolm, Chem.
Soc. Rev., 2008, 37, 1108; (g) B. D. Sherry and A. Furstner, Acc. Chem.
Res., 2008, 41, 1500; and references cited therein.
¨
We are grateful to the National Natural Science Foundation
of China (No. 20872073, 21150110105, and 21172125), the
‘‘111’’ Project of Ministry of Education of China (Project No.
B06005), and the Committee of Science and Technology of
Tianjin for financial support.
16 For iron-catalyzed C–H activation, see: (a) A. A. O. Sarhan and
C. Bolm, Chem. Soc. Rev., 2009, 38, 2730; (b) E. Nakamura and
N. Yoshikai, J. Org. Chem., 2010, 75, 6061; (c) C.-L. Sun, B.-J. Li
and Z.-J. Shi, Chem. Rev., 2011, 111, 1293.
17 (a) J. Gao, J.-Q. Wang, Q.-W. Song and L.-N. He, Green Chem.,
2011, 13, 1182; (b) C.-X. Miao, J.-Q. Wang, B. Yu, W.-G. Cheng,
J. Sun, S. Chanfreau, L.-N. He and S.-J. Zhang, Chem. Commun.,
2011, 47, 2697.
18 See the ESIw for the details of optimization for the reaction conditions.
19 For the activation of alkynes by transition metals, see:
(a) J. W. Bode and E. M. Carreira, J. Am. Chem. Soc., 2001,
123, 3611; (b) N. Gommermann, C. Koradin, K. Polborn and
Notes and references
1 For applications of propargylamines, see: (a) M. A. Huffman,
N. Yasuda, A. E. DeCamp and E. J. J. Grabowski, J. Org. Chem.,
1995, 60, 1590; (b) M. Konishi, H. Ohkuma, T. Tsuno, T. Oki,
G. D. VanDuyne and J. Clardy, J. Am. Chem. Soc., 1990, 112, 3715;
(c) M. Miura, M. Enna, K. Okuro and M. Nomura, J. Org. Chem.,
1995, 60, 4999; (d) A. Jenmalm, W. Berts, Y. L. Li, K. Luthman,
I. Csoregh and U. Hacksell, J. Org. Chem., 1994, 59, 1139;
(e) G. Dyker, Angew. Chem., Int. Ed., 1999, 38, 1698; (f) T. Naota,
H. Takaya and S. I. Murahashi, Chem. Rev., 1998, 98, 2599.
2 For conventional synthetic procedures for propargylamines, see:
(a) T. Harada, T. Fujiwara, K. Iwazaki and A. Oku, Org. Lett.,
2000, 2, 1855; (b) N. Rosas, P. Sharma, C. Alvarez, E. Gomez,
Y. Gutierrez, M. Mendez, R. A. Toscano and L. A. Maldonado,
Tetrahedron Lett., 2003, 44, 8019; (c) C.-H. Ding, D.-D. Chen,
Z.-B. Luo, L.-X. Dai and X.-L. Hou, Synlett, 2006, 1272.
P. Knochel, Angew. Chem., Int. Ed., 2003, 42, 5763; (c) R. Fassler,
¨
D. E. Frantz, J. Oetiker and E. M. Carreira, Angew. Chem., Int.
Ed., 2002, 41, 3054; (d) T. F. Knopfel and E. M. Carreira, J. Am.
¨
¨
Chem. Soc., 2003, 125, 6054; (e) R. Fassler, C. S. Tomooka,
D. E. Frantz and E. M. Carreira, Proc. Natl. Acad. Sci. U. S. A.,
2004, 101, 5843; (f) R. Takita, Y. Fukuta, R. Tsuji, T. Ohshima
and M. Shibasaki, Org. Lett., 2005, 7, 1363.
20 (a) L. A. Berben and J. R. Long, Inorg. Chem., 2005, 44, 8459;
(b) C. D. Delfs, R. Stranger, M. G. Humphrey and A. M.
McDonagh, J. Organomet. Chem., 2000, 607, 208; (c) R. Nast,
Coord. Chem. Rev., 1982, 47, 89 and references therein.
21 See the ESIw for details of the XPS analysis.
c
2026 Chem. Commun., 2012, 48, 2024–2026
This journal is The Royal Society of Chemistry 2012