C O M M U N I C A T I O N S
natural oligomers as substrates. Protease-catalyzed peptide synthesis
has been well documented for both L- and D-amino acids as well
as for small peptide isosteres.7,9,13 Additionally, ribosome-based
translation systems have been utilized for the incorporation of
abiotic residues into short peptide sequences.14 The study presented
here further broadens the possibilities for appropriating biological
catalysts in order to generate nonnatural products. The synthesis
of peptoid concatenation products 7 suggests that the ligation
approach will indeed prove to be generally suitable for assembling
peptoid macromolecules. We believe the products reported here
are among the largest sequence-specific peptidomimetics generated
to date.
Figure 2. Peptoid concatenation reaction. (a) HPLC of peptoid concatena-
tion products 7. (b) MALDI mass spectrometry of concatemer products 7.
Average ∆ m/z ) 581, corresponding to mass of pentamer repeat units.
Scheme 3 a
Acknowledgment. This work was supported by the NYSTAR’s
James D. Watson Investigator Program. We acknowledge the
NCRR/NIH for the Research Facilities Improvement Grant (C06
RR-16572) at NYU.
Supporting Information Available: Experimental procedures;
HPLC data; mass spectrometry data. This material is available free of
a Reaction conditions: 0.2 M HEPES, pH 8.0, 100 mM NaCl, 1 mM
CaCl2, 12% DMF, 5 mM 6, 1.6 µM clostripain, rt, 12 h; n ) 1,2,3,...>30.
References
of the ligation approach with a nonnatural peptidomimetic system.
Broad sequence tolerance and efficient ligation of fragments
resulting in long chain products up to 32 residues in length establish
that this approach is compatible with a diverse range of peptoid
substrates.
(1) (a) Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.;
Bradley, E. K.; Truong, K. T.; Dill, K. A.; Cohen, F. E.; Zuckermann, R.
N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303-4308. (b) Wu, C. W.;
Kirshenbaum, K.; Sanborn, T. J.; Patch, J. A.; Huang, K.; Dill, K. A.;
Zuckermann, R. N.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 13525-
13530. (c) Burkoth, T. S.; Beausoleil, E.; Kaur, S.; Tang, D. Z.; Cohen,
F. E.; Zuckermann, R. N. Chem. Biol. 2002, 9, 647-654. (d) Lee, Y. C.;
Zuckermann, R. N.; Dill, K. A. J. Am. Chem. Soc. 2005, 127, 10999-
11009.
To examine the potential of generating macromolecular conden-
sation products, reactions with a single peptoid pentamer 6 bearing
a free N-terminus and C-terminal p-guanidinophenyl ester were
performed with the expectation that the oligomer could function
as both acyl donor and acceptor (Scheme 3). Remarkably, the
clostripain-catalyzed reaction yielded peptoids that exhibited a range
of molecular weights up to and beyond 20 kDa, as confirmed by
MALDI mass spectrometry (Figure 2). Mass differences observed
between the product molecules 7 correspond to one oligomer repeat
unit (avg. ∆m/z ) 581). The HPLC and MALDI-MS data indicate
that the highly polydisperse reaction products are the result of
numerous iterative ligation events (>30), ultimately forming large
concatenation products of the starting oligomer.
Our preliminary data suggest that protease-mediated ligation may
allow the synthesis of more complex sequence-specific peptoid
macromolecules exhibiting properties similar to those of proteins.
The mild conditions for the ligation reactions should obviate the
need for protecting groups on reactive chemical functionalities
present on peptidomimetic side chains. This is especially important
in the synthesis of long chain polymers, where large numbers of
protecting groups can present deprotection and solubility difficulties.
Additionally, our approach may be adapted to construct polymer
mimics of protein biomaterials or chimeric products that blend
polymer types.
(2) (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173-180. (b) Hill, D. J.;
Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001,
101, 3893-4012.
(3) (a) Patch, J. A.; Barron, A. E. Curr. Opin. Chem. Biol. 2002, 6, 872-
877. (b) Patch, J. A.; Barron, A. E. J. Am. Chem. Soc. 2003, 125, 12092-
12093. (c) Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E.
T.; Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. U.S.A. 2000 97
13003-13008.
(4) Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.; Moos,
W. H. Drug DeV. Res. 1995, 35, 20-32.
(5) (a) Horn, T.; Lee, B. C.; Dill, K. A.; Zuckermann, R. N. Bioconjugate
Chem. 2004, 15, 428-435. (b) Kimmerlin, T.; Seebach, D.; Hilvert, D.
HelV. Chim. Acta 2002, 85, 1812-1826. (c) Jang, H.; Fafarman, A.; Holub,
J. M.; Kirshenbaum, K. Org. Lett. 2005, 7, 1951-1954. (d) Cheng, R.
P.; DeGrado, W. F. J. Am. Chem. Soc. 2002, 124, 11564-11565.
(6) (a) Chang, T. K.; Jackson, D. Y.; Burnier, J. P.; Wells, J. A. Proc. Natl.
Acad. Sci. U.S.A. 1994, 91, 12544-12548. (b) Abrahmsen, L.; Tom, J.;
Burnier, J.; Butcher, K. A.; Kossiakoff, A.; Wells, J. A. Biochemistry
1991, 30, 4151-4159. (c) Joe, K.; Borgford, T. J.; Bennet, A. J.
Biochemistry 2004, 43, 7672-7677.
(7) (a) Sekizaki, H.; Itoh, K.; Toyota, E.; Tanizawa, K. Tetrahedron Lett.
1997, 38, 1777-1780. (b) Bordusa, F.; Ullmann, D.; Elsner, C.; Jakubke,
H. D. Angew. Chem., Int. Ed. Engl. 1997, 36, 2473-2475. (c) Wehofsky,
N.; Koglin, N.; Thust, S.; Bordusa, F. J. Am. Chem. Soc. 2003, 125, 6126-
6133.
(8) Klibanov, A. M. Nature 2001, 409, 241-246.
(9) (a) Gu¨nther, R.; Bordusa, F. Chem.sEur. J. 2000, 6, 463-467. (b)
Gu¨nther, R.; Stein, A.; Bordusa, F. J. Org. Chem. 2000, 65, 1672-1679.
(10) Mitchell, W. M.; Harrington, W. F. J. Biol. Chem. 1968, 243, 4683-
4692.
(11) Ullmann, D.; Jakubke, H. D. FEBS Lett. 1994, 223, 865-872.
(12) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10646-10647.
(13) Wehofsky, N.; Thust, S.; Burmeister, J.; Klussmann, S.; Bordusa, F.
Angew. Chem., Int. Ed. 2003, 42, 677-679.
Investigations to further elucidate the effect of peptoid chain
length, sequence, and conformation on enzymatic efficiency are
underway. Improvements in ligation efficiencies may be realized
through different enzyme systems, alterations in reaction medium,
and protease engineering to enhance the accommodation of non-
(14) (a) Tan, Z.; Forster, A. C.; Blacklow, S. C.; Cornish, V. W. J. Am. Chem.
Soc. 2004, 126, 12752-12753. (b) Frankel, A.; Millward, S. W.; Roberts,
R. W. Chem. Biol. 2003, 10, 1043-1050.
JA055105M
9
J. AM. CHEM. SOC. VOL. 127, NO. 49, 2005 17133