8156
C.-H. Wang et al. / Tetrahedron Letters 46 (2005) 8153–8157
References and notes
1
0.8
0.6
0.4
0.2
0
1a
1b
2a
2b
2c
2d
1. (a) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001,
34, 359–369; (b) Dodabalapur, A.; Torsi, L.; Katz, H. E.
Science 1995, 268, 270–271; (c) Dimitrakopoulos, C. D.;
Kymissis, I.; Purushothaman, S.; Neumayer, D. A.;
Duncombe, P. R.; Laibowitz, R. B. Adv. Mater. 1999,
11, 1372–1375; (d) Gundlach, D. J.; Nichols, J. A.; Zhou,
L.; Jackson, T. N. Appl. Phys. Lett. 2002, 80, 2925–2927;
(e) Wurthner, F. Angew. Chem., Int. Ed 2001, 40, 1037–
¨
1039.
2. (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew.
Chem., Int. Ed. 1998, 37, 402–428; (b) Sirringhaus, H.;
Tessler, N.; Friend, R. H. Science 1998, 280, 1741–
1744.
350
400
450
500
550
Wavelength (nm)
Figure 3. Normalized fluorescence spectra of 1a–b, 2a–d recorded in
3. (a) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers,
R. J. J. Am. Chem. Soc. 2004, 126, 12740–12741; (b)
Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R.
J. Am. Chem. Soc. 2001, 123, 9482–9483; (c) Miao, Q.;
Nguyen, T. Q.; Someya, T.; Blanchet, G. B.; Nuckolls, C.
J. Am. Chem. Soc. 2003, 125, 10284–10287; (d) Meng, H.;
Bendikov, M.; Mitchell, G.; Helgeson, R.; Wudl, F.; Bao,
Z.; Siegrist, T.; Kloc, C.; Chen, C. Adv. Mater. 2003, 15,
1090–1093; (e) Sheraw, C. D.; Jackson, T. N.; Eaton, D.
L.; Anthony, J. E. Adv. Mater. 2003, 15, 2009–2011; (f)
Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett.
2003, 5, 4245–4248.
4. (a) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J.
Am. Chem. Soc. 1998, 120, 664–672; (b) Payne, M. M.;
Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett.
2004, 6, 3325–3328.
5. (a) Xu, C.; Wakamiya, A.; Yamaguchi, S. J. Am. Chem.
Soc. 2005, 127, 1638–1639; (b) Wu, Y.; Li, Y.; Gardner, S.;
Ong, B. J. Am. Chem. Soc. 2005, 127, 614–618; (c) Jacob,
J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. C.;
dilute THF solutions at room temperature.
the effective conjugation length of the backbone due
to sp3-hybrid carbon atoms.10 Moreover, the absorp-
tion maximum peaks of 2a–d red-shifted about 59 nm
in comparison with those of 1a–b, which meant
that the effective conjugation length of 2a–d were
longer than those of 1a–b. The absorption spectra of
2a–d obviously red-shifted in comparison with that of
the ladder oligo(p-aniline) (378 nm) were close to
those of ladder oligo(p-phenylene).5f In comparison
with the silicon-incorporated ladder oligo(p-phenylene),
the absorption of 2a–d slightly blue-shifted about
25nm. 5d
The emission behaviors of all compounds showed the
well-defined vibronic structures. The emission spectra
of compounds 1a and 1b exhibited the maximum at
about 383 nm with two peaks at 362 and 407 nm, respec-
tively. Compounds 2a–d peaked at about 424 nm with
two shoulders at about 402 and 451 nm, respectively.
We also observed the smaller StockÕs shift for 2a–d,
which indicated that no obvious aggregation or inter-
chain interactions for 2a–d were formed in the excited
states due to the steric structures.
Mullen, K. J. Am. Chem. Soc. 2004, 126, 6987–6995; (d)
¨
Wakim, S.; Bouchard, J.; Blouin, N.; Michaud, A.;
Leclerc, M. Org. Lett. 2004, 6, 3413–3416; (e) Haryono,
A.; Miyatake, K.; Natori, J.; Tsuchida, E. Macromolecules
1999, 32, 3146–3149; (f) Merlet, S.; Birau, M.; Wang, Z. Y.
Org. Lett. 2002, 4, 2157–2159.
6. (a) Do¨tz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Mullen,
¨
K. J. Am. Chem. Soc. 2000, 122, 7707–7717; (b) Eickmeier,
C.; Holmes, D.; Junga, H.; Matzger, A. J.; Scherhag, F.;
Shim, M.; Vollhardt, K. P. C. Angew. Chem., Int. Ed.
1999, 38, 800–804; (c) Donovan, P. M.; Scott, L. T. J. Am.
Chem. Soc. 2004, 126, 3108–3112; (d) Goldfinger, M. B.;
Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997,
119, 4578–4593.
In summary, we have developed an efficient and highly
diversified route to construct novel, unique linear fused
p-conjugated polycyclic systems. These sulfur-incorpo-
rated fused polycyclic aromatics show interesting
optical properties. The maximum absorption peaks
of 2a–d obviously red-shifted compared to those of
1a–b. The properties in thin solid films including the
carrier mobility are still under investigation in our
laboratory. These linear polycyclic aromatic derivatives
should also be of potential application as semiconduct-
ing materials.
7. (a) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.;
Otsubo, T. J. Am. Chem. Soc. 2004, 126, 5084–5085; (b)
Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J.;
Dodabalapur, A. Adv. Mater. 1997, 9, 36.
8. Compounds 3a–d were obtained as solids. 3b (yield: 87%):
1H NMR (300 MHz, CDCl3, ppm): d 0.91–0.95(t, 6H),
1.36–1.50 (m, 12H), 1.80–1.85 (m, 4H), 4.01–4.06 (t, 4H),
7.0–7.03 (d, J = 9.0 Hz, 4H), 7.66–7.69 (d, J = 9.0 Hz,
4H); 8.21 (s, 2H); 13C NMR (100.6 MHz, CDCl3, ppm): d
14.1, 22.6, 25.7, 29.2, 31.6, 68.1, 103.5, 114.4, 119.1, 126.5,
131.2, 136.8, 140.6, 143.3, 159.8; MS m/z (EI): 794 (M+,
Acknowledgements
1
100%). 3c: H NMR (300 MHz, CDCl3, ppm): d 2.60 (s,
6H), 7.10–7.12 (d, 2H), 7.49–7.51 (d, 2H), 8.14–8.16 (d,
The present research was financially supported by
NSFC, Chinese Academy of Sciences and State Key
Basic Research Program. Z. Yang and J. Pei thank the
National Science Fund for Distinguished Young
Scholars. The authors wish to thank the anonymous
referees for their comments and suggestion, which
enable us to improve the manuscript.
1
2H); MS m/z (EI): 698 (M+, 100%). 3d (yield: 80%): H
NMR (300 MHz, CDCl3, ppm): d 1.13–1.16 (d, 36H),
1.27–1.34 (m, 6H), 6.98–7.01 (d, J = 8.4 Hz, 4H), 7.60–
7.63 (d, J = 8.4 Hz, 4H), 8.21 (s, 2H); 13C NMR
(100.6 MHz, CDCl3, ppm): d 12.7, 17.9, 119.2, 119.9,
127.1, 131.2, 136.8, 140.7, 143.4, 157.0; MS m/z (EI): 938
(M+, 100%).