Communications
based on the N-Troc donor and the lactamized acceptors as
the main units, has been demonstrated by the novel method
for the synthesis of the HLG-2 and Hp-s6 glycan chains. On
the basis of these results, we are now investigating the
synthesis of a(2!8)-linked oligosialic acids.
Received: May 11, 2005
Revised: July 13, 2005
Published online: September 27, 2005
Keywords: gangliosides · glycosylation · lactams · sialic acids
.
[1] Selected reviews: a) H. Herzner, T. Reipen, M. Schultz, H.
Kuntz, Chem. Rev. 2000, 100, 4495 – 4537; b) K. C. Nicolaou,
H. J. Mitchell, Angew. Chem. 2001, 113, 1624 – 1672; Angew.
Chem. Int. Ed. 2001, 40, 1576 – 1624; selected papers on
oligosaccharide synthesis: c) H. Yoshizaki, N. Fukuda, K. Sato,
M. Oikawa, K. Fukase, Y. Suda, S. Kusumoto, Angew. Chem.
2001, 113, 1523 – 1528; Angew. Chem. Int. Ed. 2001, 40, 1475 –
1480; d) I. Matsuo, M. Wada, S. Manabe, Y. Yamaguchi, K.
Ohtake, K. Kato, Y. Ito, J. Am. Chem. Soc. 2003, 125, 3402 –
3403; e) K. Hori, N. Sawada, H. Ando, H. Ishida, M. Kiso, Eur. J.
Org. Chem. 2003, 3752 – 3760; f) P. Wang, Y.-J. Kim, M. Navarro-
Villalobos, B. D. Rohde, D. Gin, J. Am. Chem. Soc. 2005, 127,
3256 – 3257.
[2] a) Review: G.-J. Boons, A. V. Demchenko, Chem. Rev.2000, 100,
4539 – 4565; leading articles on sialyl-a(2!8)sialoside synthesis:
b) K. Okamoto, T. Kondo, T. Goto, Tetrahedron Lett. 1986, 27,
5229 – 5232; c) Y. Ito, M. Numata, M. Sugimoto, T. Ogawa, J.
Am. Chem. Soc. 1989, 111, 8508 – 8510; d) J. C. Castro-Palomino,
Y. E. Tsvetkov, R. R. Schmidt, J. Am. Chem. Soc. 1998, 120,
5434 – 5440; e) A. V. Demchenko, G.-J. Boons, Chem. Eur. J.
1999, 5, 1278 – 1283; f) C. De Meo, A. V. Demchenko, G.-J.
Boons, J. Org. Chem. 2001, 66, 5490 – 5497.
[3] Y. Ito, S. Numata, S. Shibayama, T. Ogawa, J. Org. Chem. 1992,
57, 1821 – 1831.
[4] T. Ijuin, K. Kitajima, Y. Song, S. Kitazume, S. Inoue, S. T.
Haslam, H. R. Morris, A. Dell, Y. Inoue, Glycoconjugate J. 1996,
13, 401 – 413.
[5] K. Yamada, R. Matsubara, M. Kaneko, T. Miyamoto, R.
Higuchi, Chem. Pharm. Bull. 2001, 49, 447 – 452.
Scheme 6. a) CbzOSu, DMAP, py, room temperature, 42 h, 79%;
[6] H. Ando, Y. Koike, H. Ishida, M. Kiso, Tetrahedron Lett. 2003,
44, 6883 – 6886.
[7] Y. E. Tsvetkov, R. R. Schmidt, Tetrahedron Lett. 1994, 35, 8583 –
8586.
[8] Schmidtꢀs group first disclosed the idea of conformational
change of the sialyl acceptor to enhance the reactivity of the
C8-hydroxy group. They exploited the 1,7-lactonated sialyl
acceptor for 8-O-sialylation but obtained mainly b-disialoside.
See reference [7].
[9] S. Komba, C. Glalustian, H. Ishida, T. Feizi, R. Kannagi, M. Kiso,
Angew. Chem. 1999, 111, 1203 – 1206; Angew. Chem. Int. Ed.
1999, 38, 1131 – 1133.
b) 1. Et3N, H2O/CH3CN, 408C, 45 h; 2. MeI, K2CO3, DMF, room
temperature, 3 h, 79% (2 steps); c) Zn, AcOH, THF, room temper-
ature, 28 h, 94%; d) LevOH, DCC, DMAP, CH2Cl2, room temperature,
2 h, 95%; e) 7, NIS, TfOH, EtCN, MS (3), ꢀ80!ꢀ608C, 4 d, 66%;
f) 1. H2, 10% Pd(OH)2/C, NH3, EtOH, room temperature, 1 h;
2. Ac2O, py, room temperature, 30 min; 3. H2, 10% Pd(OH)2/C, EtOH,
408C, 3 h; 4. Ac2O, py, room temperature, 12 h, 86% (4 steps);
g) NH2NH2·AcOH, EtOH, room temperature, 6 h, 90%; h) SO3·py, py,
room temperature, 7 h, 65%. Lev=levulinoyl=4-oxopentanoyl, Su=
succinimidyl, DCC=N,N’-dicyclohexyl carbodiimide.
[10] M. Ek, P. J. Garegg, H. Hultberg, S. Oscarson, J. Carbohydr.
Chem. 1983, 2, 305 – 311.
[11] a) T. Murase, H. Ishida, M. Kiso, A. Hasegawa, Carbohydr. Res.
1988, 184, c1 – c4; b) A. Hasegawa, T. Nagahama, H. Ohki, K.
Hotta, H. Ishida, M. Kiso, J. Carbohydr. Chem. 1991, 10, 493 –
498.
[12] a) H. Hori, T. Nakajima, Y. Nishida, H. Ohrui, H. Meguro,
Tetrahedron Lett. 1988, 29, 6317 – 6320; b) J. Haverlamp, T.
Spoormaker, L. Dorland, J. F. G. Vliegenthart, R. Shauer, J. Am.
Chem. Soc. 1979, 101, 4851 – 4853; c) S. Prytulla, J. Lauterwein,
M. Klessinger, J. Thiem, Carbohydr. Res. 1991, 215, 345 – 349.
(d = 4.19 ppm). Thereby, the installation of the sulfonyl group
on the C8-hydroxy group was determined.
In conclusion, we have discovered that 1,5-lactam bridg-
ing in sialic acid endows high reactivity to the C4- and C8-
hydroxy groups, thereby leading to the supply of a(2!4)- and
a(2!8)disialic acid sequences in high yields. Furthermore,
the practical efficacy of the synergic synthetic approach
toward diverse disialic acid containing oligosaccharides,
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 6759 –6763