L. Pe´rez et al. / Tetrahedron Letters 46 (2005) 8649–8652
8651
Table 3. 1,4-Addition to (4R,5R,20E)-N-(cinnamoyl)- and N-(crotonyl)-oxazolidin-2-ones ent-2 and ent-3
O
O
N
1. CuBrS(CH3)2 (1.5 equiv), THF, –40 oC, 2 h
O
O
O
O
2. ZnI2 (0.3 equiv), R'MgBr (3 equiv), THF
N
–40 oC to 25 oC, 20 min
R= Ph; ent-2
R= Me; ent-3
R= Ph; ent-4 - ent-7
R= Me; ent-8 - ent-11
R'
R
R
Entry
Substrate
R0
Major producta
Yield (%)b
dr (R:S)c
1
2
3
4
5
6
7
8
ent-2
ent-2
ent-2
ent-2
ent-3
ent-3
ent-3
ent-3
Me
Et
n-Pr
n-Bu
Ph
Et
n-Pr
n-Bu
(4R,5R,30S)-ent-4
(4R,5R,30S)-ent-5
(4R,5R,30S)-ent-6
(4R,5R,30S)-ent-7
(4R,5R,30R)-ent-8
(4R,5R,30R)-ent-9
(4R,5R,30R)-ent-10
(4R,5R,30R)-ent-11
75
81
79
77
74
78
78
75
10:90
12:88
15:85
18:82
74:26
85:15
80:20
77:23
a Configuration of major products were assigned by chemical correlation with the corresponding carboxylic acids, by optical rotation and HPLC
analysis with a Chiralcel OD column, see Ref. 9.
b Yields were measured after purification by column chromatography on silica gel [hexanes–EtOAc (5:1)].
c Diastereoisomeric ratios were measured from 1H NMR spectra of crude products.
nones.3b,f However, in the presence of ZnI2, we observed
a substantial improvement on diastereoselectivities,
56, 8033–8061; (c) Feringa, B. L. Acc. Chem. Res. 2000,
33, 346–353; (d) Ramon, D.; Yus, M. Angew. Chem., Int.
Ed. 2005, 44, 1602–1634.
which were similar to those reported with N-enoyl-4-iso-
3. (a) Taylor, R. J. K.; Casy, G. In Organocopper Reagents–
propyl-2-oxazolidinones.3e We surmise that it is due to
A Practical Approach; Taylor, T. J. K., Ed.; Oxford
the chelation of Zn(II) with the carbonyl groups, so
the precomplexed Zn(II)/oxazolidinones seemed to react
in a syn-s-cis conformation.
´
University Press: Oxford, 1994; (b) Nicolas, E.; Russel, K.
C.; Hruby, V. J. J. Org. Chem. 1993, 58, 766–770; (c)
Bergdahl, M.; Iliefski, T.; Nilsson, M.; Olsson, T. Tetra-
hedron Lett. 1995, 36, 3227–3230; (d) Nakamura, E.; Mori,
S. Angew. Chem., Int. Ed. 2000, 39, 3750–3771; (e) Pollock,
P.; Dambacher, J.; Annes, R.; Bergdahl, M. Tetrahedron
Lett. 2002, 43, 3693–3697; (f) Dambacher, J.; Anness, R.;
Pollock, P.; Bergdahl, M. Tetrahedron 2004, 60, 2097–
2110; (g) Maezaki, N.; Sawamoto, H.; Suzuki, T.; Yoshi-
gami, R.; Tanaka, T. J. Org. Chem. 2004, 69, 8387–8398.
The study of stereoselective conjugated addition reac-
tions is an ongoing project in our laboratory. Prelimi-
nary results showed that Michael addition reactions to
trans-N-cinnamoyl- and N-crotonyloxazolidin-2-ones 2
and 3 or ent-2 and ent-3 in the presence of ZnI2
(0.3 equiv) proceed with good yields (75–81%) and good
diastereoisomeric ratios (up to 91:9). The configuration
of the new stereogenic center is based on the chiral auxi-
liaries 1 or ent-1 employed.
´
4. (a) Des Mazery, R.; Pullez, M.; Lopez, F.; Harutyunyan,
S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
2005, 127, 9966–9967; (b) Arink, A. M.; Braam, T. W.;
Keeris, R.; Jastrzebski, J. T. B. H.; Benhaim, C.; Rosset,
S.; Alexakis, A.; van Knoten, G. Org. Lett. 2004, 6, 1959–
1962.
5. (a) Qian, X.; Russel, K. C.; Boteju, L. W.; Hruby, V. J.
Tetrahedron 1995, 51, 1033–1054; (b) Wipf, P.; Takahashi,
H. Chem. Commun. 1996, 2675–2676; (c) Andersson, P.
G.; Schink, H. E.; Osterlund, K. J. Org. Chem. 1998, 63,
8067–8070; (d) Williams, D. R.; Kissel, W. S.; Li, J. J.
Tetrahedron Lett. 1998, 39, 8593–8596; (e) Schneider, C.;
Reese, O. Synthesis 2000, 1689–1694; (f) Dambacher, J.;
Bergdahl, M. Org. Lett. 2003, 5, 3539–3541.
Acknowledgments
This work was supported by CONACYT, Consejo Nac-
´
ional de Ciencia y Tecnologıa (Project No. V39500-Q
and Student Grant No. 134558).
6. (a) Anaya de Parrodi, C.; Juaristi, E.; Quintero, L.; Clara-
Sosa, A. Tetrahedron: Asymmetry 1997, 8, 1075–1082; (b)
References and notes
´
Anaya de Parrodi, C.; Clara-Sosa, A.; Perez, L.; Quintero,
´
L.; Maranon, V.; Toscano, R. A.; Avina, J. A.; Rojas-
˜ ˜
Lima, S.; Juaristi, E. Tetrahedron: Asymmetry 2001, 12,
69–79.
1. (a) Oare, D. A.; Heathcock, C. H. Top. Stereochem. 1991,
20, 87–170; (b) Trost, B. M.; Fleming, I.. In Compre-
hensive Organic Synthesis; Pergamon Press: Oxford, UK,
1991; Vol. 4, pp 1–236; (c) Perlmutter, P. Conjugate
Addition Reactions in Organic Synthesis; Pergamon Press:
Oxford, UK, 1992; (d) Perlmutter, P. In Advances in
Asymmetric Synthesis; Stephenson, G. R., Ed.; Chapman
& Hall: London, UK, 1996; pp 222–230; (e) Krause, N.;
Hoffmann-Roeder, A. Synthesis 2001, 171–196.
7. For recent reviews on the use of (R)- and (S)-a-phenyl-
ethylamine in the preparation of enantiopure compounds,
´
see: (a) Juaristi, E.; Escalante, J.; Leon-Romo, J. L.;
Reyes, A. Tetrahedron: Asymmetry 1998, 9, 715–740; (b)
´
Juaristi, E.; Leon-Romo, J. L.; Reyes, A.; Escalante, J.
Tetrahedron: Asymmetry 1999, 10, 2441–2495.
2. (a) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92,
771–806; (b) Sibi, M. P.; Manyem, S. Tetrahedron 2000,
8. (a) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J.
Am. Chem. Soc. 1981, 103, 3099–3111; (b) Gage, J. R.;