K. Takahashi et al. / Tetrahedron Letters 46 (2005) 8927–8930
8929
5. Harrison, T.; Williams, B. J.; Swain, C. J.; Ball, R. G.
Bioorg. Med. Chem. Lett. 1994, 4, 2545.
O
OH
Ph
a
b
10
6. For the synthesis of racemic CP-99,994: (a) Desai, M. C.;
Thadeio, P. F.; Lefkowitz, S. L. Tetrahedron Lett. 1993,
34, 5831; (b) Rosen, T.; Seeger, T. F.; Mclean, S.; Desai,
M. C.; Guiarino, K. J.; Byrce, D.; Pratt, K.; Heym, J. J.
Med. Chem. 1993, 36, 3197.
N
N
Ph
Boc
Boc
11
14
7. For the synthesis of racemic L-733,060: Tomooka, K.;
Nakazaki, A.; Nakai, T. J. Am. Chem. Soc. 2000, 122, 408.
8. For the enantioselective synthesis of CP-99,994: (a)
Chandrasekhar, S.; Mohanty, P. K. Tetrahedron Lett.
1999, 40, 5071; (b) Atobe, M.; Yamazaki, N.; Kibayashi,
C. J. Org. Chem. 2004, 69, 5595; (c) Liu, L.-X.; Ruan,
Y.-P.; Guo, Z.-Q.; Huang, P.-Q. J. Org. Chem. 2004, 69,
6001; (d) Lemire, A.; Grenon, M.; Pourashraf, M.;
Charette, A. B. Org. Lett. 2004, 6, 3517.
9. For the enantioselective synthesis of L-733,060: (a) Bhas-
kar, G.; Rao, B. V. Tetrahedron Lett. 2003, 44, 915; (b)
Huang, P.-Q.; Liu, L.-X.; Wei, B.-G.; Ruan, Y.-P. Org.
Lett. 2003, 5, 1927; (c) Yoon, Y.-J.; Joo, J.-E.; Lee, K.-Y.;
Kim, Y.-H.; Oh, C.-Y.; Ham, W.-H. Tetrahedron Lett.
2005, 46, 739; (d) Baker, R.; Harrison, T.; Hollingworth,
G. J.; Swain, C. J.; Williams, B. J. EP 0528,495A1, 1993.
10. For the catalytic asymmetric synthesis of CP-99,994:
Tsuritani, N.; Yamada, K.; Yoshikawa, N.; Shibasaki,
M. Chem. Lett. 2002, 276.
11. Nakano, H.; Takahashi, K.; Suzuki, Y.; Fujita, R.
Tetrahedron: Asymmetry 2005, 16, 609.
12. (a) Johannsen, M.; Jorgensen, K. A. Chem. Rev. 1998, 98,
1689; (b) Heumann, A. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Wein-
heim, 1998; p 251.
13. (a) Jumnah, R.; Williams, A. C.; Williams, J. M. J. Synlett
1995, 821; (b) Bower, J. F.; Jumnah, R.; Williams, A. C.;
Williams, J. M. J. J. Chem. Soc., Perkin Trans. 1 1997,
1411.
c
CF3
d
ent -2 · HCl
O
CF3
Ph
N
Boc
15
Scheme 5. Reagents and conditions: (a) Swern oxidation; (b)
L-Selectride, THF, ꢀ20 °C, 83% (two steps); (c) NaH, 3,5-bistrifluoro-
methylbenzyl bromide, DMF, room temperature, 24 h, 77%; (d) HCl,
CH2Cl2, room temperature, 24 h, 98%.
stereoselective reduction of imine (12) using sodium
cyanoborohydride, gave the desired N-Boc-ent-1 in
49% yield from 10. Using this method, the racemization
of 11 was not observed. Finally, the removal of the Boc
group with HCl afforded ent-1 in 99% yield.18
Furthermore, this methodology was applied to the syn-
thesis of ent-2. Thus, the Swern oxidation of 10, followed
by the stereoselective reduction of 11, using L-Selectride
at ꢀ20 °C gave the desired N-Boc-2,3-cis-hydroxy piper-
idine 14 in 83% yield from 10. Furthermore, the reaction
of 14 with bistrifluoromethyl bromide using NaH as a
base afforded N-Boc-ent-2 in 77% yield, which was then
easily converted to ent-2 in 98% yield (Scheme 5).19
14. For the experimental details of (6S)-N-benzyl-6-phenyl-
3,6-dihydropyridin-2-one (6): a mixture of 7 (1380 mg,
3.76 mmol) and second-Grubbs catalyst (39 mg,
0.046 mmol) in dry dichloromethane (500 mL) was stirred
at 60 °C under argon. After 24 h, the solvent was
evaporated under reduced pressure. The residue was
chromatographed on a column of silica gel (1:1 AcOEt–
hexane) to give 6 (1138 mg, 94%) as a white solid. HPLC
analysis indicated that the enantiomeric excess of 6 was
98% [Chiralcel OD-H; hexane–2-propanol = 9:1; flow
rate = 0.5 mL/min; tR = 14.5 (major), 17.1 (minor) min].
In conclusion, we demonstrated both the catalytic asym-
metric synthesis of ent-1 and the first catalytic asymmet-
ric synthesis of ent-2 using the Pd-catalyzed asymmetric
allylic amination and the ring closing metathesis as key
steps. All of reactions proceeded stereo- and regioselec-
tively in the synthetic route. The synthesis of ent-1 com-
pleted in 10 steps and the overall yield was 26%, which is
better than the result (6%) of ShibasakiÕs group. In addi-
tion, the synthesis of ent-2 also completed the overall
yield of ent-2 was 20%. Further applications of this
methodology using chiral building block 4 will be
reported in due course.
20
Mp 103 °C; ½aꢁD ꢀ97.76 (c 5.23, CHCl3, 98% ee); IR
1
(KBr) 701, 1451, 1640, 3023 cmꢀ1; H NMR (CDCl3) d:
3.12–3.33 (m, 2H), 3.41 (d, J = 15.0 Hz, 1H), 4.79–4.83
(m, 1H), 5.61 (d, J = 15.0 Hz, 1H), 5.65–5.79 (m, 2H),
7.15–7.21 (m, 4H), 7.25–7.38 (m, 6H); 13C NMR (CDCl3):
d 32.11, 46.29, 61.65, 120.50, 126.36, 127.04 (2C), 127.41,
128.19, 128.24 (2C), 128.61 (2C), 129.10 (2C), 136.76,
140.06, 167.56; MS m/z 263 (M+); HRMS calcd for
C18H17NO (M+) 263.1310, found: 263.1312.
References and notes
15. Spectral data for some key compounds: compound 8:
HPLC analysis indicated that the enantiomeric excess of 8
was 98% [Chiralcel OD-H; hexane–2-propanol = 9:1; flow
rate = 0.5 mL/min; tR = 31.9 (major), 45.3 (minor) min].
1. (a) von Euler, U. S.; Gaddum, J. H. J. Physiol. 1931, 72,
74; (b) Chang, M. M.; Leeman, S. E.; Niall, H. D. Nat.
New Biol. 1971, 232, 86.
2. (a) Snijdelaar, D. G.; Dirksen, R.; Slappendel, R.; Crul, B.
J. P. Eur. J. Pain 2000, 4, 121; (b) Datar, P.; Srivastava, S.;
Coutinho, E.; Govil, G. Curr. Top. Med. Chem. 2004, 4, 7 5.
3. (a) Takeuchi, Y.; Berkley Shands, E. F.; Beusen, D. D.;
Marshall, G. R. J. Med. Chem. 1998, 41, 3609; (b) Swain,
C. J. Prog. Med. Chem. 1998, 35, 57 .
20
Mp 120 °C; ½aꢁD ꢀ21.80 (c 2.73, CHCl3, 98% ee); IR
(KBr) 698, 746, 1226, 1434, 1598 cmꢀ1 1H NMR
;
(CDCl3): d 3.02 (d, J = 18.5 Hz, 1H), 3.24 (d, J =
18.5 Hz, 1H), 3.32 (s, 1H), 3.42 (s, 1H), 3.48 (d, J =
15.5 Hz, 1H), 4.79 (s, 1H), 5.54 (d, J = 15.3 Hz, 1H),
7.19–7.35 (m, 7H), 7.37–7.46 (m, 3H); 13C NMR (CDCl3):
d 33.14, 47.33, 50.91, 53.74, 59.46, 126.75 (2C), 127.28,
127.60 (2C), 128.57 (2C), 128.65, 129.33 (2C), 135.85,
136.74, 166.02; MS m/z 279 (M+); HRMS calcd for
4. Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K.
P.; Snider, R. M. J. Med. Chem. 1992, 35, 4911.