and are the subject of ongoing investigations. These results suggest
that the low productivity of these catalysts is not due to a low
intrinsic activity for olefin insertion, but rather it is a consequence
of the low turnover number in polymer chains resulting from the
instability of the Ni–H.
Notes and references
˚
{ Crystal Data. C31H29N3NiO, M 5 518.28, rhombic, a 5 9.742(1) A,
3
˚
˚
˚
b 5 9.913(1) A, c 5 13.653(2) A, V 5 1299.1(3) A , a 5 81.520(2)u,
¯
b 5 85.137(2)u, c 5 88.411(2)u, T 5 150 K, space group P1, Z 5 2,
˚
l(0.71073 A radiation), 6591 reflections measured, 4231 unique
(Rint 5 0.0582) which were used in all calculations. Residuals: R1; wR2
0.0440; 0.1027. Substantial disorder was observed for C atoms (C22–C26)
but was modeled at a single position, yielding a satisfactory solution. Other
models of this positional disorder did not improve R1 and wR2 values.
CCDC 280713. For crystallographic data in CIF or other electronic format
see DOI: 10.1039/b511202h
The high linearity of the polyethylenes produced, particularly at
low ethylene pressures (run 13) is noteworthy, especially in com-
parison to neutral salicylaldimine and cationic diimine Ni catalysts,
which generate more highly branched polyethylenes.2,13,34,35 One
possible cause of the high selectivity for linear products is a low
probability of chain-walking for these neutral Ni carbene
complexes. Alternatively, if chain-walking does occur, the high
selectivity for linear products could be a consequence of a higher
rate of ethylene insertion into primary versus secondary metal
carbon bonds. Trace amounts of internal olefins are observed,
particularly at higher temperatures and lower ethylene pressures,
suggesting that a small amount of chain walking is possible.
To test for chain-walking and to determine the ability of these
catalysts to polymerize a-olefins, we investigated the propylene
polymerization behavior of 2b. Injection of a toluene solution of 2b
into a stirred stainless-steel reactor filled with liquid propylene at
40 uC generated low molecular weight (Mn 5 540, Mw/Mn 5 2.68)
atactic propylene oligomers (4.1 kg PP (mol Ni)21 h21). The 13C
NMR spectrum of the polypropylene is consistent with a low
molecular weight atactic polypropylene formed by both 1,2 and
2,1 insertions. Integration revealed equal amounts of methylene,
methine, and methyl carbons. In contrast to the polypropylenes
obtained from cationic Ni or Pd diimine catalysts, we did not
observe a significant amount of 1,3 regio-errors or long ethylene
sequences due to ‘‘chain-straightening’’ of propylene.2,36
1 W. Keim, Angew. Chem., Int. Ed. Engl., 1990, 29, 235–244.
2 S. Ittel, L. Johnson and M. Brookhart, Chem. Rev., 2000, 100,
1169–1203.
3 T. Younkin, E. Conner, J. Henderson, S. Friedrich, R. Grubbs and
D. Bansleben, Science, 2000, 287, 460–462.
4 V. Gibson and S. Spitzmesser, Chem. Rev., 2003, 103, 283–315.
5 R. Bauer, H. Chung, P. Glockner, W. Keim and H. Zwet, US Patent,
1972, 3635937.
6 J. Heinicke, M. Kohler, N. Peulecke and W. Keim, J. Catal., 2004, 225,
16–23.
7 K. A. Ostaja-Starzewski and J. Witte, Angew. Chem., Int. Ed. Engl.,
1987, 26, 63–64.
8 U. Klabunde and S. Ittel, J. Mol. Catal., 1987, 41, 123–134.
9 U. Klabunde, R. Mulhaupt, T. Herskovitz, A. Janowicz, J. Calabrese
and S. Ittel, J. Polym. Sci., Part A: Polym. Chem., 1987, 25, 1989–2003.
10 J. Heinicke, M. Kohler, N. Peulecke, W. Keim and P. G. Jones,
Z. Anorg. Allg. Chem., 2004, 630, 1181–1190.
11 Z. Komon, X. Bu and G. Bazan, J. Am. Chem. Soc., 2000, 122,
12379–12380.
12 Z. B. Guan and W. J. Marshall, Organometallics, 2002, 21, 3580–3586.
13 D. H. Camacho, E. V. Salo, J. W. Ziller and Z. B. Guan, Angew. Chem.,
Int. Ed., 2004, 43, 1821–1825.
14 K. Hirose and W. Keim, J. Mol. Catal., 1992, 73, 271–276.
15 J. Heinicke, M. Kohler, N. Peulecke, M. Z. He, M. K. Kindermann,
W. Keim and G. Fink, Chem.–Eur. J., 2003, 9, 6093–6107.
16 B. E. Ketz, A. P. Cole and R. M. Waymouth, Organometallics, 2004, 23,
2835–2837.
17 R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo,
C. D. Hoff and S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 2485–2495.
18 A. J. Arduengo, Acc. Chem. Res., 1999, 32, 913–921.
19 D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem. Rev.,
2000, 100, 39–91.
20 W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309.
21 A. W. Waltman and R. H. Grubbs, Organometallics, 2004, 23,
3105–3107.
22 X. Wang, S. Liu and G. X. Jin, Organometallics, 2004, 23, 6002–6007.
23 M. Tilset, O. Andell, A. Dhindsa and M. Froseth, WO Patent, 1998,
0249758.
24 B. R. Dible and M. S. Sigman, J. Am. Chem. Soc., 2003, 125, 872–873.
25 D. Sellmann, W. Prechtel, F. Knoch and M. Moll, Inorg. Chem., 1993,
32, 538–546.
26 R. Douthwaite, D. Haussinger, M. Green, P. Silcock, P. Gomes,
A. Martins and A. Danopoulos, Organometallics, 1999, 18, 4584–4590.
27 D. Mcguinness, W. Mueller, P. Wasserscheid, K. Cavell, B. Skelton,
A. White and U. Englert, Organometallics, 2002, 21, 175–181.
28 S. Caddick, F. G. N. Cloke, P. B. Hitchcock and A. K. D. Lewis,
Angew. Chem., Int. Ed., 2004, 43, 5824–5827.
29 W. Keim, F. Kowaldt, R. Goddard and C. Kruger, Angew. Chem., Int.
Ed. Engl., 1978, 17, 466–467.
30 D. Mcguinness, N. Saendig, B. Yates and K. Cavell, J. Am. Chem. Soc.,
2001, 123, 4029–4040.
31 D. Mcguinness, K. Cavell, B. Yates, B. Skelton and A. White, J. Am.
Chem. Soc., 2001, 123, 8317–8328.
32 U. Mueller, W. Keim, C. Krueger and P. Betz, Angew. Chem., Int. Ed.
Engl., 1989, 28, 1011–1013.
33 W. Keim, New J. Chem., 1994, 18, 93–96.
34 C. Wang, S. Friedrich, T. Younkin, R. Li, R. Grubbs, D. Bansleben and
M. Day, Organometallics, 1998, 17, 3149–3151.
35 Z. Guan, J. Am. Chem. Soc., 2002, 124, 5616–5617.
36 E. F. Mccord, S. J. Mclain, L. T. J. Nelson, S. D. Arthur, E. B. Coughlin,
S. D. Ittel, L. K. Johnson, D. Tempel, C. M. Killian and M. Brookhart,
Macromolecules, 2001, 34, 362–371.
These results suggest that the Ni carbene enolates exhibit a much
lower preference for chain-walking compared to cationic Ni cata-
lysts. The high linearity of these polyethylenes is thus likely a conse-
quence of a minimal amount of chain-walking and a low turnover
number in polymer chains. This linearity is consistent with observa-
tions that neutral Ni catalysts derived from more strongly donating
PO ligands show a higher selectivity for linear ethylene enchain-
ment than catalysts derived from NO ligands. Since carbenes are
stronger donors than phosphines, these carbene enolate complexes
may favor linear enchainment even more than PO complexes.
The low molecular weights observed are likely a consequence of
the modest steric demands of the carbene enolate ligands in 2a and
2b. The higher molecular weights observed for 2b relative to 2a
implies that more sterically hindered ligands might lead to higher
molecular weights as observed for other neutral or cationic Ni
catalysts.2
In conclusion, we have prepared two novel neutral Ni complexes
derived from anionic N-heterocyclic carbene enolate ligands and
shown that these complexes are capable of polymerizing ethylene
in a highly linear fashion. Although the catalysts deactivate
rapidly, endgroup analysis has provided a useful hypothesis for
guiding future catalyst development. These complexes are also
active for propylene oligomerization in the absence of co-catalysts;
analysis of the oligopropylenes suggests that chain walking is
minimal for this system. Ongoing efforts focus on improving
catalyst lifetime and investigating the tolerance of this catalyst
system to polar monomers.
We acknowledge the NSF (CHE-0305436) and LG Chem for
financial support.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5693–5695 | 5695