M. Adinolfi et al. / Tetrahedron Letters 44 (2003) 4661–4663
4663
equipped with acid labile functionalities. In all cases
acetylations occurred in high yields at room tempera-
ture or at 60°C (entries 4–7). Interestingly, the results
listed on Table 1 show that the acetylation conditions
are compatible with the stability of several acid labile
groups such as primary acetonides, TBDMS ethers,
benzylidenes, enol ethers, trityl ethers. In contrast, in
some examples of the above cited acid Lewis promoted
acetylations the cleavage of acid labile acetal and silyl
ether functionalities has been reported.15,32
5. Iqbal, J.; Srivastava, R. R. J. Org. Chem. 1992, 57, 2001.
6. Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.
J. Org. Chem. 1996, 61, 4560.
7. Barrett, A. G. M.; Braddock, D. C. Chem. Commun. 1997,
351.
8. Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 265.
9. Miyashita, M.; Shiina, I.; Miyoshi, S.; Mukaiyama, T. Bull.
Chem. Soc. Jpn. 1993, 66, 1516.
10. Izumi, J.; Shiina, I.; Mukaiyama, T. Chem. Lett. 1995, 141.
11. Mukaiyama, T.; Shiina, I.; Miyashita, M. Chem. Lett. 1992,
625.
The different reactivity of primary and secondary
hydroxyl functions observed in these first experiments
suggested the potentiality of the protocol for regioselec-
tive protections of polyols. As shown in entries 9–12 of
Table 1, substrates 7a–10a could be acetylated at their
primary position in short reaction times and generally
in high yield. Representative experiments are consti-
tuted by entries 8 and 9, showing that compound 7a
can be alternatively converted into the mono acetylated
derivative 7c or the peracetylated derivative 7b by
simply changing the reaction temperature.
12. Saravanan, P.; Singh, V. K. Tetrahedron Lett. 1999, 40,
2611.
13. Chauhan, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett
1999, 1743.
14. Karimi, B.; Seradj, H. Synlett 2001, 519.
15. Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G.
G. A. J. Org. Chem. 1998, 63, 2342.
16. Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Angew.
Chem., Int. Eng. Ed. 2000, 39, 2877.
17. Kharta, K. P. R.; Field, R. A. Tetrahedron 1997, 53, 11754.
18. Li, A.-X.;Li, T.-S.;Ding, T.-H. Chem. Commun. 1997, 1389.
19. Bhaskar, P. M.; Loganathan, D. Tetrahedron Lett. 1998,
39, 2215.
20. Ballini, R.; Bosica, G.; Carloni, S.; Ciaralli, L.; Maggi, R.;
Sartori, G. Tetrahedron Lett. 1998, 39, 6049.
21. Breton, G. W. J. Org. Chem. 1997, 62, 8952.
22. Chandrasekahar, R.; Ramachhander, T.; Takhi, M. Tetra-
hedron Lett. 1998, 39, 3263.
It should be outlined the simplicity of the proposed
procedure, cheap commercially available reagents being
used without resorting to particular experimental pre-
cautions. The molecular sieves can be used without any
preliminary activation and removed by simple filtration.
In many cases pure products were often obtained by a
simple dilution with dichloromethane and washings
with aqueous Na2CO3.
23. Kumareswaran, R.; Pachamutu, K.; Vankar, Y. D. Synlett
2000, 1652.
24. Reddy, B. M.; Sreekanth, P. M. Synth. Commun. 2002, 32,
2815.
25. Posner, G. H.; Oda, M. Tetrahedron Lett. 1981, 22, 5003.
26. Rana, S. S.; Barlow, J. J.; Matta, K. L. Tetrahedron Lett.
1981, 22, 5007.
27. Bianco, A.; Brufani, M.; Melchioni, C.; Romagnoli, P.
Tetrahedron Lett. 1997, 38, 651.
28. Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Org. Chem.
1993, 58, 3791.
In conclusion we have shown that commercially avail-
able 4 A molecular sieves can promote the acetylation
,
of both primary and secondary alcoholic functionali-
ties. The proposed procedure is based on commercially
available and inexpensive reagents, and is experimen-
tally very simple.34 In addition, the procedure was
shown to be perfectly compatible with a variety of
functional and protecting groups adopted in carbohy-
drate chemistry and can even be usefully employed to
perform regioselective acetylations of saccharidic diols.
29. Ilankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64,
9063.
30. Orita, A.; Mitsutome, A.; Otera, J. J. Org. Chem. 1998, 63,
2420.
31. Yamada, S. J. Org. Chem. 1992, 57, 1591.
32. Hagiwara, H.; Morohashi, K.; Sakai, H.; Suzuki, T.; Ando,
M. Tetrahedron 1998, 54, 5845.
33. Molecular sieves are routinely exploited as drying agents
in glycosidation reactions. Their involvement in the stereo-
controlled synthesis of a,a%-homodisaccharides has also
been reported: Posner, G. H.; Bull, D. S. Tetrahedron Lett.
1996, 37, 6279.
Acknowledgements
This work was supported by MIUR (Programmi di
Ricerca di Interesse Nazionale 2001 and 2002) and by a
grant (to M.S.) from Universita` Federico II di Napoli
(Progetto Giovani Ricercatori).
34. Typical procedure: compound 3a (724 mg) is suspended in
References
,
acetic anhydride (15 mL) and 4 A molecular sieves (1.5 g;
Fluka Chemie GmbH, catalogue number 69834) are added.
The mixture is stirred at 60°C and after completion of the
reaction (TLC) the mixture is diluted with dichloromethane
and the organic phase washed several times with a saturated
Na2CO3 aqueous solution. Combined aqueous phases are
extracted with dichloromethane, and the combined organic
phases are concentrated under vacuum and purified on a
short silica gel column to yield 3b (875 mg, 93%).
1. Stort, G.; Takahashi, T.; Kawamoto, I.; Suzuki, T. J. Am.
Chem. Soc. 1978, 100, 8272.
2. Hofle, G.; Steglich, V.; Vorbruggen, H. Angew. Chem., Int.
Eng. Ed. 1978, 17, 569.
3. Vedejs, E.;Bennet, N. S.;Conn, L. M.;Diver, S. T.;Gingras,
M.; Lin, M.; Oliver, P. A.; Peterson, M. J. J. Org. Chem.
1993, 58, 7286.
4. D’Sa, B. A.; Verkade, J. G. J. Org. Chem. 1996, 61, 2963.