3358
A. C. B. Burtoloso, C. R. D. Correia / Tetrahedron Letters 45 (2004) 3355–3358
(c) Yoda, H.; Oguchi, T.; Takabe, K. Tetrahedron:
Asymmetry 1996, 7, 2113; (d) Yashima, A.; Takikawa,
H.; Mori, K. Liebigs Ann. 1996, 7, 1083; (e) Mori, K. J.
Heterocyclic Chem. 1996, 33, 1497; (f) Yoda, H.; Oguchi,
T.; Takabe, K. Tetrahedron Lett. 1997, 38, 3283; (g)
Knapp, S.; Dong, Y. Tetrahedron Lett. 1997, 38, 3813; (h)
Takikawa, H.; Maeda, T.; Seki, M. J. Chem. Soc., Perkin
Trans. 1 1997, 2, 97; (i) Lin, G. Q.; Liu, D. G. Heterocycles
1998, 47, 337; (j) Lin, G. Q.; Liu, D. G. Tetrahedron Lett.
1999, 40, 337; (k) Reference 2j cited in 3l; (l) Salgado, A.;
Boeykens, M.; Gauthier, C.; Declercq, J.; De Kimpe, N.
Tetrahedron 2002, 58, 2763; (m) Yoda, H.; Uemura, T.;
Takabe, K. Tetrahedron Lett. 2003, 44, 977; (n) Salgado,
A.; Boeykens, M.; Gauthier, C.; Dejaegher, Y.; Verniest,
G.; Lopin, C.; Tehrani, K. A.; De Kimpe, N. Tetrahedron
2003, 59, 2231.
O
OH
OH
a
+
N
Ts
N
Ts
N
Ts
TBDPSO
TBDPSO
TBDPSO
6
13a
13b
b
OH
OH
c
N
CF3COO
HO
N
H
TBDPSO
14
H
H
10
Scheme 7. Reduction of azetidinone 6 followed by deprotection. (a)
NaBH4, MeOH, )21 °C, 30 min, 70% (cis + trans); (b) Na/Naphthal-
ene, DME, )78 °C, 1 h; (c) TBAF, THF, rt, 1 h, then ATFA, 50% (two
steps).
4. Dejaegher, Y.; Kuz’nenok, N. M.; Zvonok, A. M.; De
Kimpe, N. Chem. Rev. 2002, 102, 29.
5. Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds:
from Cyclopropanes to Ylides; John Wiley and Sons: New
York, 1998.
6. (a) Moyer, M. P.; Feldman, P. L.; Rapoport, H. J. Org.
Chem. 1985, 50, 5223; (b) Emmer, G. Tetrahedron 1992,
48, 7165; (c) Hanessian, S.; Fu, J.; Chiara, J. L.; Di Fabio,
R. Tetrahedron Lett. 1993, 34, 4157; (d) Podlech, J.;
Seebach, D. Helv. Chim. Acta 1995, 78, 1238; (e) Sengupta,
S.; Das, D. Synth. Commun. 1998, 28, 403; (f) Desai, P.;
Na/naphthalene in DME followed by treatment of the
crude amine 14 with tetrabutylammonium fluoride
(TBAF), furnished, after acidification with trifluoro-
acetic acid, the azetidine salt 10 in 50% yield14 after the
two steps (Scheme 7).
In summary, we have demonstrated that metal carbe-
noid insertion of a,a0-dialkyl-a-diazoketones can be a
viable and powerful tool for the construction of fully
substituted azetidines in few steps from commercially
available amino acids. The combination of N-tosyl
diazoketones with the cheap Cu(acac)2 catalyst provided
the best results for the N–H insertion reactions. The use
ꢀ
Aube, J. Org. Lett. 2000, 2, 1657; (g) Pusino, A.; Saba, A.;
Desole, G. Gazzeta Chim. Italiana 1985, 115, 33; (h)
Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc., Perkin Trans. 1
1999, 2277.
of amino acids other than
L-serine and other higher
7. Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361.
8. Yields for 4 were initially higher. However, compound 4
was contaminated with small amounts of an undesirable
side product, which could not be separated by chroma-
tography. Reduction of 4 to azetidinol 8 with NaBH4
permitted the isolation of this side product (inert to
NaBH4 reduction).
diazoalkanes (to prepare different diazoketones) are
under investigation for the construction of other azeti-
dines in our research group.
Supplementary material
9. Typical experimental procedure: 353 mg (0.63 mmol) of
diazoketone 5 was dissolved in 13 mL of dry benzene and
the yellow solution heated under reflux. Next, 16 mg
(10 mol %) of Cu(acac)2 was added to the reaction mixture
turning it brown immediately with liberation of nitrogen.
After 1 min, the reaction mixture was cooled, the solvent
evaporated, and the crude product purified by flash
column chromatography (10% ethyl acetate/hexane) to
1H NMR and 13C NMR spectroscopic data for com-
pounds 2, 3, 4, 5, 6, 7, 8, 9, 15a, and 15b and ESI-MS
and IV for compounds 2, 3, 4, 7, 8, and 9.
Acknowledgements
1
We thank FAPESP (Research Supporting Foundation
~
furnish 205.8 mg (61%) of the azetidin-3-one 6. H NMR
of the State of Sao Paulo) for financial support and
(300 MHz, CDCl3): d 7.28–7.80 (14H, Ar), 4.67 (t,
J ¼ 2:5 Hz, 1H, H2), 4.62 (t, J ¼ 7:3 Hz, 1H, H4), 3.78–
3.90 (2dd, J ¼ 11:7, 2.9 Hz, 2H), 2.44 (s, 3H), 1.92 (q,
J ¼ 7:3 Hz, 2H), 1.51 (m, 2H), 1.04(s, 9H), 0.90 (t,
J ¼ 7:3, 3H). 13C NMR (75 MHz, CDCl3): d 198.4, 144.4,
135.4, 132.4 (2s), 129.6 (2s), 128.1, 127.6, 83.2, 83.6, 61.6,
32.2, 26.6, 21.6, 19.2, 18.4, 13.8.
fellowship, and Professor Spencer Knapp (The State
University of New Jersey) for providing spectral data of
‘mini-penazetidine’.
References and notes
10. Craig, D.; Berry, M. B. Synlett 1992, 4 1.
11. (a) Taber, D. F.; You, K. K.; Rheigold, A. L. J. Am.
Chem. Soc. 1996, 118, 547; (b) Doyle, M. P.; Westrum, L.
J.; Wolthuis, W. N. E.; See, M. M.; Boone, W. P.; Bagheri,
V.; Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958; (c)
See reference 9 cited in reference 12 below.
12. Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am.
Chem. Soc. 2002, 124, 7181.
13. Davis, F. A.; Yang, B.; Deng, J. J. Org. Chem. 2003, 68,
5147.
14. Yield not optimized.
1. Kobayashi, J.; Ishibashi, M.; Walchli, M. R.; Yamamura,
S.; Ohizumi, Y. J. Chem. Soc. Heterocycles 1996, 42, 943.
2. (a) Kobayashi, J.; Cheng, J.; Ishibashi, M.; Walchli, M.
R.; Yamamura, S.; Ohizumi, Y. J. Chem. Soc., Perkin
Trans. 1 1991, 1135; (b) Alvi, K. A.; Jaspars, M.; Crews, P.
Bioorg. Biomed. Chem. Lett. 1994, 4, 2447.
3. For previous synthesis of azetidine alkaloids and ana-
logues, see: (a) Hiraki, T.; Yamagiwa, Y.; Kamikawa, T.
Tetrahedron Lett. 1995, 36, 4841; (b) Takikawa, H.;
Maeda, T.; Mori, K. Tetrahedron Lett. 1995, 36, 7689;