Angewandte
Chemie
[6] a) M. Mülbaier, A. Giannis, Angew. Chem. 2001, 113, 4530;
initially formed alkoxyiodane 23 can oxidize the sulfur atom
to yield the sulfoxide functionality. To avoid this complica-
tion, MeSEt (1.0 equiv) was added to the reaction mixture
and the quantity of 15d was increased to 1.0 equivalent. This
alteration in the protocol afforded target aldehydes 27 and 29
(sole oxidation products of 26 and 28 as determined by
GCMS) in good preparative yields (Scheme 4); furthermore,
small amounts of MeSOEt were also isolated. It is notable
that oxidation of the thioalcohol 28 using DMP gives only
20% yield of the aldehyde 29.[12]
In conclusion, the design, preparation, structure, and
oxidative properties of novel N-(2-iodylphenyl)acylamides
14–17 have been described herein, and a mechanistic proposal
that accounts for the reactivity pattern of 14–17 has also been
sufficiently espoused. X-ray studies of 15e revealed a unique
pseudo-benziodoxazine structure, the first reported example
of a six-membered pseudocyclic scaffold for iodine(v), with
intramolecular secondary I···O bonding interactions. Prelimi-
nary experiments indicate that the reagents 14–17 can oxidize
alcohols and sulfides and that the reactivity largely depends
on the substitution pattern of the amide group adjacent to the
iodyl moiety. This discovery suggests that the pseudo-
benziodoxazine scaffold is a promising lead structure for the
design of new regio- and stereoselective hypervalent iodine
oxidants. Investigations into mechanistic and reactivity
aspects of 14–17, as well as the design of a polymer-supported
derivative of the described reagents is ongoing and will be
reported in due course.
Angew. Chem. Int. Ed. 2001, 40, 4393; b) G. Sorg, A. Mengel, G.
Jung, J. Rademann, Angew. Chem. 2001, 113, 4532; Angew.
Chem. Int. Ed. 2001, 40, 4395; c) N. N. Reed, M. Delgado, K.
Hereford, B. Clapham, K. D. Janda, Bioorg. Med. Chem. Lett.
2002, 12, 2047; d) Z. Lei, C. Denecker, S. Jegasothy, D. C.
Sherrington, N. K. H. Slater, A. J. Sutherland, Tetrahedron Lett.
2003, 44, 1635.
[7] a) D. Macikenas, E. Skrzypczak-Jankun, J. D. Protasiewicz,
Angew. Chem. 2000, 112, 2063; Angew. Chem. Int. Ed. 2000,
39, 2007; b) B. V. Meprathu, M. W. Justik, J. D. Protasiewicz,
Tetrahedron Lett. 2005, 46, 5187; c) U. H. Hirt, M. F. H. Schuster,
A. N. French, O. G. Wiest, T. Wirth, Eur. J. Org. Chem. 2001,
1569; d) U. H. Hirt, B. Spingler, T. Wirth, J. Org. Chem. 1998, 63,
7674; e) T. Wirth, U. H. Hirt, Tetrahedron: Asymmetry 1997, 8,
23; f) V.V Zhdankin, A. Y. Koposov, B. C. Netzel, N. V. Yashin,
B. P. Rempel, M. J. Ferguson, R. R. Tykwinski, Angew. Chem.
2003, 115, 2244; Angew. Chem. Int. Ed. 2003, 42, 2194; g) V.V
Zhdankin, D. N. Litvinov, A. Y. Koposov, M. J. Ferguson, R.
McDonald, R. R. Tykwinski, Chem. Commun. 2004, 106;
h) A. Y. Koposov, D. N. Litvinov, V. V. Zhdankin, Tetrahedron
Lett. 2004, 45, 2719.
[8] a) V. V. Zhdankin, A. Y. Koposov, D. N. Litvinov, M. J. Fergu-
son, R. McDonald, T. Luu, R. R. Tikwinski, J. Org. Chem. 2005,
70, 6484; b) A. Y. Koposov, V. V. Zhdankin, Synthesis 2005, 22;
c) W. J. Chung, D. K. Kim, Y. S. Lee, Tetrahedron Lett. 2003, 44,
9251.
[9] Representative procedure for the preparation of 15e: A freshly
prepared solution of 3,3-dimethyldioxirane in acetone (0.1m,
30 mL, 3.0 mmol) was added to a stirred solution of amide 11e
(0.317 g, 1.0 mmol) in CH2Cl2 (5 mL) at 08C (ice bath). The
reaction mixture was stirred for 1 h at 08C, the ice bath was
removed, and the solution was additionally stirred for 2 h at
room temperature. The solvent was removed under reduced
pressure, the remaining white solid was stirred with Et2O (5 mL)
for 15 min, filtered, washed with cold Et2O (2 2.5 mL), and
dried in vacuum to afford analytically pure 15e (0.293 g, 84%) as
a snow-white solid. M.p. 1728C (decomp.); 1H NMR (300 MHz,
CD3OD): d = 8.00 (dd, 3J = 8.0 Hz, 4J = 1.5 Hz, 1H, Ar), 7.69 (td,
3J = 7.7 Hz, 4J = 1.5 Hz, 1H, Ar), 7.51–7.59 (m, 2H, Ar), 3.68 (s,
3H, CH3), 1.43 ppm (s, 9H, 3CH3); 13C NMR (75.5 MHz,
Received: August 1, 2005
Keywords: alcohols · hypervalent iodine · oxidation ·
.
regioselectivity · thiols
ꢀ
CD3OD): d = 182.0, 147.0, 144.7 (C IO2), 134.9, 128.4, 128.3,
ꢀ1
[1] a) A. Varvoglis, Hypervalent Iodine in Organic Synthesis,
Academic Press, London, 1997; b) Hypervalent Iodine Chemis-
try (Ed.: T. Wirth), Springer, Berlin, 2003; c) M. Ochiai in
Chemistry of Hypervalent Compounds (Ed.: K. Akiba), VCH
Publishers, New York, 1999; d) H. Tohma, Y. Kita, Adv. Synth.
Catal. 2004, 346, 111; e) T. Wirth, Angew. Chem. 2005, 117, 3722;
Angew. Chem. Int. Ed. 2005, 44, 3656; f) P. J. Stang, J. Org. Chem.
2003, 68, 2997; g) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2002,
102, 2523; h) V. V. Zhdankin, Curr. Org. Synth. 2005, 2, 121.
[2] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4 155; b) M.
Frigerio, M. Santagostino, Tetrahedron Lett. 1994, 35, 8019;
c) K. C. Nicolaou, C. J. N. Mathison, J. N. Casey, T. Montagnon,
J. Am. Chem. Soc. 2004, 126, 5192; d) K. C. Nicolaou, P. S. Baran,
R. Kranich, Y. Zhong, K. Sugita, N. Zou, Angew. Chem. 2001,
113, 208; Angew. Chem. Int. Ed. 2001, 40, 202; e) K. C. Nicolaou,
T. Montagnon, P. S. Baran, Angew. Chem. 2002, 114, 1035;
Angew. Chem. Int. Ed. 2002, 41, 993; f) S. Kotha, S. Banerjee, K.
Mandal, Synlett 2004, 2043.
[3] a) D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277;
b) M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999,
64, 4537.
[4] P. J. Stevenson, A. B. Treacy, M. Nieuwenhuyzen, J. Chem. Soc.
Perkin Trans. 2 1997, 589.
[5] a) J. D. More, N. S. Finney, Org. Lett. 2002, 4, 3001; b) Z. Liu, Z.-
C. Chen, Q.-G. Zheng, Org. Lett. 2003, 5, 3321; c) A. P.
Thottumkara, T. K. Vinod, Tetrahedron Lett. 2002, 43, 569.
=
127.0, 41.5, 41.0, 28.2 ppm; IR (NaCl): n˜ = 1602 (C O), 760 cm
+
=
(I O); ESI-HRMS: m/z (%) 372.0075 (23) [M+Na] , 721.0684
(100) [2M+Na]+. Refer to the Supporting Information for
additional synthetic protocols and spectral data.
[10] E. Pretsch, P. Bühlmann, C. Affolter, Structure Determination of
Organic Compounds: Tables of Spectral Data, 3rd ed., Springer,
Berlin, 2001.
[11] X-ray diffraction data were collected on Rigaku AFC-7R
diffractometer using graphite-monochromated molybdenum
Ka radiation (l = 0.71073 ) at 293 K. Psi-scan absorption
corrections were applied to the data using TeXsan 10.3b program
(Rigaku Inc. 1997). The structure was solved by direct methods
(SIR-92) and refined by full-matrix least-squares refinement on
F2 using Crystals for Windows program. Crystal data for 15e
C12H16INO3: Mr = 349.17, tetragonal, space group I41, a = b =
14.268(2), c = 12.832(3) , a = b = g = 908, V= 2612.3(7) 3,
Z = 8, m = 2.448 mmꢀ1, 1685 reflections measured, 1568 unique
(Rint = 0.10); final R1 = 0.040, Rw = 0.101. CCDC-279792 (15e)
contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge
request/cif.
[12] G. Xu, M. Micklatcher, M. A. Silvestri, T. L. Hartman, J. Burrier,
M. C. Osterling, H. Wargo, J. A. Turpin, R. W. Buckheit, Jr., M.
Cushman, J. Med. Chem. 2001, 44, 4092.
Angew. Chem. Int. Ed. 2005, 44, 7127 –7131
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7131