pubs.acs.org/joc
many natural, pharmaceutical, and agricultural com-
Imide-Catalyzed Oxidation System: Sulfides to
Sulfoxides and Sulfones
pounds.1 Although numerous types of oxidation such as
the combinations of metals and co-oxidants,2 metal oxi-
des,3 and peroxy-acids4 have been developed, there are
some drawbacks in terms of safety, toxicity, operationality
of the reaction, and abolishment of heavy metals from the
standpoint of large-scale preparation. Therefore, convenient
and environmentally benign methods for the oxidation of
sulfides are still required.
Naohiro Fukuda and Tomomi Ikemoto*
Chemical Development Laboratories, CMC Center,
Takeda Pharmaceutical Company Limited, Yodogawa-ku,
Osaka 532-8686, Japan
Received April 14, 2010
SCHEME 1. Imide-Catalyzed NaOCl Oxidation of Sulfide
A new combination system, the oxidation of sulfides
using aqueous NaOCl in the presence of a catalytic
amount of imide under two-phase conditions, has been
developed. The combination effectively converts var-
ious sulfides to the corresponding sulfoxides and sul-
fones. It was deduced that the imide could react with
NaOCl to produce N-chloroimide, which would play
roles of both the active oxidizing reagent and phase
transfer catalyst.
The oxidation of sulfides to sulfoxides and sulfones is one of
the most important transformations in organic synthesis,
because these functional groups exist in the core structure of
Aqueous NaOCl as safe and inexpensive reagent is used
in the oxidation of sulfide; however, the lower solubility of
hypochlorite ions (OCl-) in organic solvents limits the
substrate as a reactant.5 Although phase transfer catalyst
increased the concentration of OCl- in the organic layer,
resulting in the oxidation of sulfide to sulfoxide in two-
phase condition, no sulfone was produced under the re-
ported condition.6 It was also reported that the oxidation
(1) (a) Imamura, S.; Nishikawa, Y.; Ichikawa, T.; Hattori, T.; Matsushita, Y.;
Hashiguchi, S.; Kanzaki, N.; Iizawa, Y.; Baba, M.; Sugihara, Y. Bioorg. Med.
Chem. 2005, 13, 397–416. (b) Cumming, J. G.; Cooper, A. E.; Grime, K.; Logan,
C. J.; Mclaughlin, S.; Oldfield, J.; Shaw, J. S.; Tucker, H.; Winter, J.; Whittaker, D.
Bioorg. Med. Chem. Lett. 2005, 15, 5012–5015. (c) Sammond, D. M.; Nailor,
K. E.; Veal, J. M.; Nolte, R. T.; Wang, L.; Knick, V. B.; Rudolph, S. K.;
Truesdale, A. T.; Nartey, E. N.; Stafford, J. A.; Kumar, R.; Cheung, M. Bioorg.
Med. Chem. Lett. 2005, 15, 3519–3523. (d) Shankar, B. B.; Lavey, B. J.; Zhou, G.;
Spitler, J. A.; Tong, L.; Rizvi, R.; Yang, D.-Y.; Wolin, R.; Kozlowski, J. A.; Shih,
N.-Y.; Wu, J.; Hipkin, R. W.; Gonsiorek, W.; Lunn, C. A. Bioorg. Med. Chem.
Lett. 2005, 15, 4417–4420. (e) Lavey, B. J.; Kozlowski, J. A.; Hipkin, R. W.;
Gonsiorek, W.; Lundell, D. J.; Piwinski, J. J.; Narula, S.; Lunn, C. A. Bioorg. Med.
Chem. Lett. 2005, 15, 783–786. (f) Churcher, I.; Beher, D.; Best, J. D.; Castro, J. L.;
Clarke, E. E.; Gentry, A.; Harrison, T.; Hitzel, L.; Kay, E.; Kerrad, S.; Lewis,
H. D.; Morentin-Gutierrez, P.; Mortishire-Smith, R.; Oakley, P. J.; Reilly, M.;
Shaw, D. E.; Shearman, M. S.; Teall, M. R.; Williams, S.; Wrigley, J. D. J. Bioorg.
Med. Chem. Lett. 2006, 15, 280–284. (g) Christensen, J. G.; Schreck, R.; Burrows,
J.; Kuruganti, P.; Chan, E.; Le, P.; Chen, J.; Wang, X.; Ruslim, L.; Blake, R.;
Lipson, K. E.; Ramphal, J.; Do, S.; Cui, J. J.; Cherrington, J. M.; Mendel, D. B.
Cancer Res. 2003, 63, 7345–7355.
(2) (a) Kirihara, M.; Yamamoto, J.; Noguchi, T.; Hirai, Y. Tetrahedron
Lett. 2009, 50, 1180–1183. (b) Jeyakumar, K.; Chand, D. K. Tetrahedron
Lett. 2006, 47, 4573–4576. (c) Ogata, Y.; Tanaka, K. Can. J. Chem. 1982, 60,
848. (d) Watanabe, Y.; Numata, T.; Oae, S. Synthesis 1981, 204–206. (e)
Hosseinpoor, F.; Golchoubian, H. Tetrahedron Lett. 2006, 47, 5195–5197. (f)
Hirano, M.; Yakabe, S.; Clark, J. H.; Kudo, H.; Morimoto, T. Synth.
Commun. 1996, 26, 1875–1886. (g) Zaburdaeva, E. A.; Dodonov, V. A.;
Stepovik, L. P. J. Organomet. Chem. 2007, 692, 1265–1268. (h) Xu, L.;
Cheng, J.; Trudell, M. L. J. Org. Chem. 2003, 68, 5388–5391. (i) Bahrami, K.
Tetrahedron Lett. 2006, 47, 2009–2012. (j) Al-Hashimi, M.; Roy, G.;
Sullivan, A. C.; Wilison, J. R. H. Tetrahedron Lett. 2005, 46, 4365–4368.
(3) (a) Shaabani, A.; Tavasoli-Rad, F.; Lee, D. G. Synth. Commun. 2005,
35, 571–580. (b) Mohammadpoor-Baltork, I.; Memarian, H. R.; Bahrami,
K. Can. J. Chem. 2005, 83, 115–121. (c) Ali, M. H.; Leach, D. R.; Schmitz,
C. E. Synth. Commun. 1998, 28, 2969–2981. (d) Firouzabadi, H.; Iranpoor,
N.; Zolfigol, V. Synth. Commun. 1998, 28, 1179–1187.
(4) (a) Nicolau, K. C.; Maligres, P.; Suzuki, T.; Wendeborn, S. V.; Dai, W.-M.;
Chadha, R. K. J. Am. Chem. Soc. 1992, 114, 8890–8907. (b) Imamura, S.;
Ichikawa, T.; Nishikawa, Y.; Kanzaki, N.; Takashima, K.; Niwa, S.; Iizawa,
Y.; Baba, M.; Sugihara, Y. J. Med. Chem. 2006, 49, 2784–2793. (c) Cheng, H.;
DeMello, K. M. L.; Li, J.; Sakya, S. M.; Ando, K.; Kawamura, K.; Kato, T.;
Rafka, R. J.; Jaynes, B. H.; Ziegler, C. B.; Stevens, R.; Lund, L. A.; Mann, D. W.;
Kilroy, C.; Haven, M. L.; Nimz, E. L.; Dutra, J. K.; Li, C.; Minich, M. L.;
Kolosko, N. L.; Petras, C.; Silvia, A. M.; Seibel, S. B. Bioorg. Med. Chem. Lett.
2006, 16, 2076–2080. (d) Trost, B. M.; Salzmann, T. N. J. Am. Chem. Soc. 1976,
98, 4887–4902. (e) Block, E.; Putman, D. J. Am. Chem. Soc. 1990, 112, 4072–4074.
(f) Freeman, F.; Angeletakis, C. N. J. Org. Chem. 1985, 50, 793–798. (g) Evans,
D. A.; Faul, M. M.; Colombo, L.; Bisaha, J. J.; Clardy, J.; Cherry, D. J. Am.
Chem. Soc. 1992, 114, 5977–5985.
(5) (a) Kowalski, P.; Mitka, K.; Ossowska, K.; Kolarska, Z. Tetrahedron
2005, 61, 1933–1953. (b) Banfi, S.; Montanari, F.; Quichi, S. J. Org. Chem.
1989, 54, 1850–1859.
(6) Ramsden, J. H.; Drago, R. S.; Riley, R. J. Am. Chem. Soc. 1989, 111,
3958–3961.
DOI: 10.1021/jo100719w
r
Published on Web 06/03/2010
J. Org. Chem. 2010, 75, 4629–4631 4629
2010 American Chemical Society