5822 J. Phys. Chem. A, Vol. 105, No. 24, 2001
Wang and Andrews
the experiments. The Au-(η1-OO)2 anion band increased on
-
(11) (a) Tevault, D. E. J. Chem. Phys. 1982, 76, 2859. (b) Ozin, G. A.;
Mitchell, S. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1983, 105, 6399; J.
Phys. Chem. 1982, 86, 473. (c) McIntosh, D.; Ozin, G. A. Inorg. Chem.
1976, 15, 2869; 1977, 16, 59 (Ag, Au + O2).
(12) Kasai, P. H.; Jones, P. M. J. Phys. Chem. 1986, 90, 4239.
(13) Howard, J. A.; Sutcliffe, R.; Mile, B. J. Phys. Chem. 1984, 88,
4351.
annealing after photolysis, suggesting a very high electron
affinity for Au(OO)2. Although Au(OO)2 was not observed here,
Au(OO)2- can be formed by reaction of Au(OO) and O2-; the
latter is involved in the formation of O4-, which is observed in
these experiments.28,29
(14) Huber, H.; Klotzbucher, W.; Ozin, G. A.; Vander Voet, A. Can J.
Chem. 1973, 51, 2722.
Conclusions
(15) Bare, W. D.; Citra, A.; Chertihin, G. V.; Andrews, L. J. Phys. Chem.
A 1999, 103, 5456 (Pd, Pt + O2 in argon).
Laser-ablated palladium, platinum, silver, and gold atoms
react with molecular oxygen in excess neon during condensation
at 4 K. Further reactions on annealing and photolysis are
investigated. The reaction products were identified on the basis
of the isotopic shifts of 18O2 and isotopic multiplets for mixed
16O2 + 18O2 and scrambled 16O2 + 16O18O + 18O2 samples.
The side-on Pd-(η2-OO) and Pd-(η2-OO)2 complexes were
observed after sample deposition and further annealing, while
similar complexes, Pt-(η2-OO) and Pt-(η2-OO)2, were produced
in the reaction of platinum atoms with molecular oxygen. The
O-O stretching frequencies of M-(η2-OO) (M ) Pd, Pt) are
lower than the O-O vibration in the Li+(O2-) molecule, but
the bonding mechanisms are different: d orbitals are involved,
and Pt(O2) exhibits the effect of more d orbital back-bonding
than Pd(O2). In addition, the insertion product OPtO was formed
via the reaction of platinum atoms generated by laser ablation
with molecular oxygen and by photoisomerism of PtO2.
In the Ag, Au + O2 experiments, end-on M-(η1-OO) (M )
Ag, Au) complexes were produced, which represent different
bonding from side-on M-(η2-OO) (M ) Pd, Pt). The analogous
OAuO dioxide molecule was observed. In addition, the anions
(16) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356 (Ti,
Zr, Hf + O2 in argon).
(17) Citra, A.; Chertihin, G. V.; Andrews, L.; Neurock, M. J. Phys.
Chem. A 1997, 101, 3109 (Ni + O2 in argon).
(18) Chertihin, G. V.; Andrews, L.; Bauschlicher, C. W., Jr. J. Phys.
Chem. A 1997, 101, 4026 (Cu + O2 in argon).
(19) Zhou M. F.; Andrews, L. J. Phys. Chem. A 1998, 102, 8251 (Ta,
Nb + O2 in argon).
(20) Bare, W. D.; Souter, P. F.; Andrews, L. J. Phys. Chem. A 1998,
102, 8279. (Mo, W + O2 in argon).
(21) Zhou, M. F.; Andrews, L. J. Chem. Phys. 1999, 111, 4230 (Cr,
Mo, W + O2 in neon).
(22) Citra, A.; Andrews, L. J. Phys. Chem. A 1999, 103, 4182 (Ir + O2
in argon).
(23) Citra, A.; Andrews, L. J. Phys. Chem. A 1999, 103, 4845 (Rh +
O2 in argon).
(24) Citra, A.; Andrews, L. J. Mol. Struct. 1999, 189, 95 and unpublished
results (Ag, Au + O2).
(25) Zhou, M. F.; Citra, A.; Liang, B.; Andrews, L. J. Chem. Phys. A
2000, 104, 3457 (Re, Ru, Os + O2).
(26) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
(27) Hassanzadeh, P.; Andrews, L. J. Phys. Chem. 1992, 96, 9177.
(28) Thompson, W. E.; Jacox, M. E. J. Chem. Phys. 1989, 91, 3826.
(29) Zhou, M. F.; Hacaloglu, J.; Andrews, L. J. Chem. Phys. 1999, 110,
9450.
(30) Zhou, M. F.; Andrews, L. J. Chem. Phys. 1999, 110, 10370.
(31) Zhou, M. F.; Andrews, L. J. Am. Chem. Soc. 1998, 120, 11499.
(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision B.1; Gaussian
Inc.: Pittsburgh, PA, 1995.
Ag-(η1-OO)- and Au-(η1-OO)2 were formed by electron-
-
capture processes. Doping with CCl4 to serve as an electron
trap gave the same neutral molecules but eliminated the anion
bands, which further supports the anion identifications.21,29-30
The good agreement with frequencies and isotopic frequency
ratios from BPW91 and B3LYP density functional calculations
further supports the vibrational assignments. The natural bond
orbital charge distributions in M(O2) molecules show increased
charge transfer in the order Au < Pd < Pt < Ag (2A′) < Li,
and there is an unusual matrix effect for the least ionic (AuOO)
of these.
(33) (a) Becke, A. D. Phys. ReV. A 1988, 38, 3098. (b) Perdew, J. P.;
Wang, Y. Phys. ReV. B 1992, 45, 13244.
(34) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
The complexes M-(η2-OO) (M ) Pd, Pt) and molecular
Li+(O2-) show 3-7 cm-1 argon-neon blue shifts, but Ag-(η1-
OO) and Au-(η1-OO) exhibit 27 and 120 cm-1 differences,
respectively, suggesting that these two complexes undergo more
charge transfer in the argon matrix. We attribute this difference
to the stabilization of increased charge transfer by the more
polarizable argon matrix.
(35) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem.
Phys. 1980, 72, 650. (b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem.
Phys. 1984, 80, 3265.
(36) (a) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (b) Hay,
P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(37) Bytheway, I.; Wong, M. W. Chem. Phys. Lett. 1988, 282, 219.
(38) Nilsson, C.; Scullman, R.; Mehendale, N. J. Mol. Spectrosc. 1970,
35, 172. Scullman, R.; Sassenberg, U.; Nilsson, C. Can. J. Phys. 1975, 53,
1991. Jansson, K.; Scullman, R. J. Mol. Spectrosc. 1976, 61, 299.
Sassenberg, U.; Scullman, R. J. Mol. Spectrosc. 1977, 68, 331.
(39) Srdanov, V. I.; Harris, D. O. J. Chem. Phys. 1987, 89, 2748.
(40) Andrews, L.; Spiker, R. C., Jr. J. Phys. Chem. 1972, 76, 3208.
(41) A BPW91/6-311+G**/SDD calculation produced the same re-
Acknowledgment. We acknowledge support for this re-
search from the National Science Foundation.
References and Notes
2
2
sult: the A′′ state is lower than A′ by 21.6 kcal/mol.
(42) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch,
M. J. J. Phys. Chem. 1996, 100, 16098.
(1) Novvakova, J.; Brabec, L. J. Catal. 1997, 166, 186.
(2) Zambelli, T.; Barth, J. V.; Wintterlin, J. Nature 1997, 390, 495.
(3) Bao, X.; Muhler, M.; Schedelniedrig, T.; Schlogl, R. Phys. ReV. B
1996, 54, 2249.
(4) Zou, S. Z.; Chan, H. Y. H.; Williams, C. T.; Weaver, M. J.
Langmuir 2000, 16, 754.
(5) Maya, L.; Paranthaman, M.; Thundat, T.; Bauer, M. L. J. Vac. Sci.
Technol., B 1996, 14, 15.
(6) Wadayama, T.; Suzuki, O.; Suzuki, Y.; Hatta, A. Appl. Phys. A
1997, 64, 501.
(7) Andrews, L.; Chertihin, G. V.; Ricca, A.; Bauschlicher, C. W., Jr.
J. Am. Chem. Soc. 1996, 118, 467.
(8) Potter, W. T.; Tucker, M. P.; Houtchens, R. A.; Caughey, W. S.
Biochemistry 1987, 26, 4699.
(9) Hirota, S.; Ogura, T.; Appleman, E. H.; Shinzawa-Itah, K.;
Yoshikawa, S.; Kitagawa, T. J. Am. Chem. Soc, 1994, 116, 10564.
(10) Hirota, S.; Ogura, T.; Kitagawa, T. J. Am. Chem. Soc. 1994, 116,
10564.
(43) Tevault, D. E.; DeMarco, R. A.; Smardzewski, R. R. J. Chem. Phys.
1981, 75, 4168.
(44) Spiker, R. C., Jr.; Andrews, L. J. Chem. Phys. 1973, 59, 1851.
(45) Barysz, M.; Pyykko, P. Chem. Phys. Lett. 1998, 285, 149.
(46) Calculations with a larger basis set gave slightly higher frequencies,
see ref 24.
(47) Reed, A. J.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88,
899.
(48) Frenking, G.; Frohlich, N. Chem. ReV. 2000, 100, 717.
(49) Andrews, L. J. Chem. Phys. 1969, 50, 4288.
(50) Allen, W. D.; Horner, D. A.; Dekock, R. L.; Remington, R. B.;
Schaefer, H. F., III. Chem. Phys. 1989, 133, 11 and references therein.
(51) Jacox, M. E. Chem. Phys. 1994, 189, 149.
(52) Pyykko, P. Chem. ReV. 1988, 88, 563.
(53) Manceron, L., to be published.