Ortho Effect in the Bergman Cyclization
In the general sense, control over enediyne reactivity can be
achieved through either strain12-15 or electronic effects.16 The
seminal hypothesis rationalizing the influence of electronic
factors was advanced by Koga and Morokuma17 who attributed
the high activation energy18 of the Bergman cyclization to a
strong electron repulsion between the in-plane occupied acety-
lene π orbitals. The dominating role of the in-plane π orbitals
in the cyclization kinetics was particularly well-illustrated in a
valence bond study of Galbraith and co-workers.19 These
findings received further support in a recent natural bond orbital
(NBO) study by our group20 that also found that the role of
repulsion between the in-plane filled orbitals is accentuated by
a parallel decrease in the attractive two-electron interaction
between the π orbital and the π* orbital. At the so-called
“Nicolaou’s threshold” (ca. 3.2 Å),10 the attractive interaction
vanishes because the in-plane π orbitals become parallel,
mimicking the symmetry forbidden transition state (TS) for
thermal [2 + 2] cycloaddition.20 The above studies imply that
electron-withdrawing substituents should promote the cyclization
only when they are capable of an interaction with the in-plane
π system.21,22 As a result, the position of the acceptor substituent
becomes important. For example, Schreiner et al. demonstrated
that the cyclization is accelerated by σ acceptors at the terminal
acetylene atoms,23 whereas Zaleski et al. found that such effects
can be accentuated by coordination with Lewis acids in the
vicinity of alkyne termini.24 In contrast, Jones and Plourde
showed that the progressive substitution of hydrogen atoms by
halogens at the vinyl position decreases the reaction rate,25 while
Chen et al. found that protonation of the nitrogen atom in 3-aza-
enediynes increases the cyclization barrier.26 Because developing
radical centers do not communicate with the orthogonal π
system, neither the remote substitution of the central double
bond by a benzene ring (benzannelation) nor the presence of a
(1) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. Other cycloaromatization
reactions: (a) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. Tetrahedron
Lett. 1989, 30, 4995. (b) Myers, A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am.
Chem. Soc. 1992, 114, 9369. (c) Nakatani, K.; Isoe, S.; Maekawa, S.; Saito,
I. Tetrahedron Lett. 1994, 35, 605. (d) Sullivan, R. W.; Coghlan, V. M.;
Munk, S. A.; Reed, M. W.; Moore, H. W. J. Org. Chem. 1994, 59, 2276.
(e) Toda, F.; Tanaka, K.; Sano, I.; Isozaki, T. Angew. Chem., Int. Ed. Engl.
1994, 33, 1757. (f) Nicolaou, K. C.; Skokotas, G.; Maligres, P.; Zuccarello,
G.; Schweiger, E. J.; Toshima, K.; Wendeborn, S. Angew. Chem., Int. Ed.
Engl. 1989, 28, 1272. (g) Engels, B.; Lennartz, C.; Hanrath, M.; Schmittel,
M.; Strittmatter, M. Angew. Chem., Int. Ed. 1998, 37, 1960. (h) Schmittel,
M.; Steffen, J. P.; Angel, M. A. W.; Engels, B.; Lennartz, C.; Hanrath, M.
Angew. Chem., Int. Ed. 1998, 37, 1562. (i) Kawatkar, S. P.; Schreiner, P.
R. Org. Lett. 2002, 4, 3643.
(2) (a) Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497. (b)
Maier, M. E.; Bosse, F.; Niestroj, A. J. Eur. J. Org. Chem. 1936, 1, 1. (c)
Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. H.
Tetrahedron 1996, 52, 6453. (d) Fallis, A. G. Can. J. Chem. 1999, 77,
159. (e) Caddick, S.; Delisser, V. M.; Doyle, V. E.; Khan, S.; Avent, A.
G.; Vile, S. Tetrahedron 1999, 55, 2737. (f) Wang, K. K. Chem. ReV. 1996,
96, 207.
(11) Cramer, C. J.; Nash, J. J.; Squires, R. R. Chem. Phys. Lett. 1997,
277, 311. Cramer, C. J.; Squires, R. R. J. Phys. Chem. A 1997, 101, 9191.
Wierschke, S. G.; Nash, J. J.; Squires, R. R. J. Am. Chem. Soc. 1993, 115,
11958. Johnson, W. T. G.; Sullivan, M. B.; Cramer, C. J. Int. J. Quantum
Chem. 2001, 85, 492. Johnson, W. T. G.; Cramer, C. J. J. Phys. Org. Chem.
2001, 14, 597. Cramer, C. J.; Thompson, J. J. Phys. Chem. A 2001, 105,
2091. Kraka, E.; Cremer, D. J. Comput. Chem. 2001, 22, 216.
(12) Incorporation of the enediyne unit into a strained 9- or 10-membered
ring was shown to facilitate the reaction through ground-state destabilization.
For the experimental work, see: (a) Nicolaou, K. C.; Zuccarello, G.; Ogawa,
Y.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866.
(b) Iida, K.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 8875.
(13) For a theoretical analysis of the strain effects on the cyclization,
see: (a) Snyder, J. P. J. Am. Chem. Soc. 1989, 111, 7630. (b) Snyder, J. P.;
Tipsword, G. E. J. Am. Chem. Soc. 1990, 112, 4040. (c) Snyder, J. P. J.
Am. Chem. Soc. 1990, 112, 5367.
(14) Kraka, E.; Cremer, D. J. Am. Chem. Soc. 1994, 116, 4929.
(15) The cyclization can also be controlled by the release of strain in
the TS: (a) Magnus, P.; Carter, P.; Elliott, J.; Lewis, R.; Harling, J.; Pitterna,
T.; Bauta, W. E.; Fortt, S. J. Am. Chem. Soc. 1992, 114, 2544.
(16) For the most recent review, see: Rawat, D. S.; Zaleski, J. M. Synlett
2004, 293.
(17) Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1991, 113, 1907.
(18) (a) Roth, W. R.; Hopf, H.; Horn, C. Chem. Ber. 1994, 127, 1765.
(b) Wenthold, P. G.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 6401.
(19) Galbraith, J. M.; Schreiner, P. R.; Harris, N.; Wei, W.; Wittkopp,
A.; Shaik, S. Chem.sEur. J. 2000, 6, 1446.
(3) Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai,
W. M. J. Am. Chem. Soc. 1992, 114, 7360.
(4) Myers, A. G.; Dragovich, P. S. J. Am. Chem. Soc. 1992, 114, 5859.
(5) (a) Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle,
T. W., Eds.; Marcel Dekker: New York, 1995. (b) Neocarzinostatin: The
Past, Present, and Future of an Anticancer Drug; Maeda, H., Edo, K.,
Ishida, N., Eds.; Springer: New York, 1997.
(6) (a) Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103. (b)
Paloma, L. G.; Smith, J. A.; Chazin, W. J.; Nicolaou, K. C. J. Am. Chem.
Soc. 1994, 116, 3697. (c) Kappen, L. S.; Goldberg, I. H. Biochemistry 1983,
22, 4872. (d) Zein, N.; McGahren, W. J.; Morton, G. O.; Ashcroft, J.;
Ellestead, G. A. J. Am. Chem. Soc. 1989, 111, 6888. (e) De Voss, J. J.;
Townsend, C. A.; Ding, W. D.; Morton, G. O.; Ellestad, G. A.; Zein, N.;
Tabor, A. B.; Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 9669. (f)
Hangeland, J. J.; Voss, J. J.; Heath, J. A.; Townsend, C. A.; Ding, W. D.;
Ashcroft, J. S.; Ellestad, G. A. J. Am. Chem. Soc. 1992, 114, 9200. (g)
Dedon, P. C.; Salzberg, A. A.; Xu, J. H. Biochemistry 1993, 32, 3617. (h)
Christner, D. F.; Frank, B. L.; Kozarich, J. W.; Stubbe, J.; Golik, J.; Doyle,
T. W.; Rosenberg, I. E.; Krishnan, B. J. Am. Chem. Soc. 1992, 114, 8763.
(i) Sugiura, Y.; Shiraki, T.; Konishi, M.; Oki, T. Proc. Natl. Acad. Sci.
U.S.A. 1990, 87, 3831. (j) Shiraki, T.; Uesugi, M.; Sugiura, Y. Biochem.
Biophys. Res. Commun. 1992, 188, 584. (k) Shiraki, T.; Sugiura, Y.
Biochemistry 1990, 29, 9795. (l) Sugiura, Y.; Arakawa, T.; Uesugi, M.;
Shiraki, T.; Ohkuma, H.; Konishi, M. Biochemistry 1991, 30, 2989. (m)
Matsumoto, T.; Okuno, Y.; Sugiura, Y. Biochem. Biophys. Res. Commun.
1993, 195, 659. (n) Xu, Y.; Zhen, Y. S.; Goldberg, I. H. Biochemistry 1994,
33, 5947.
(7) Chen, X.; Tolbert, L. M.; Hess, D. W.; Henderson, C. Macromolecules
2001, 34, 4104. Shah, H. V.; Babb, D. A.; Smith, D. W., Jr. Polymer 2000,
41, 4415. John, J. A.; Tour, J. M. J. Am. Chem. Soc. 1994, 116, 5011.
(8) Bowles, D. M.; Palmer, G. J.; Landis, C. A.; Scott, J. L.; Anthony,
J. E. Tetrahedron 2001, 57, 3753. Bowles, D. M.; Anthony, J. E. Org. Lett.
2000, 2, 85.
(9) (a) Scheiner, A. C.; Schaefer, H. F., III; Liu, B. J. Am. Chem. Soc.
1989, 111, 3118. (b) Nicolaides, A.; Borden, W. T. J. Am. Chem. Soc. 1993,
115, 11951. (c) Lindh, R.; Persson, B. J. J. Am. Chem. Soc. 1994, 116,
4963. (d) Lindh, R.; Lee, T. J.; Bernhardsson, A.; Persson, B. J.; Karlstro¨m,
G. J. Am. Chem. Soc. 1995, 117, 7186. (e) Kraka, E.; Cremer, D.; Bucher,
G.; Wandel, H.; Sander, W. Chem. Phys. Lett. 1997, 268, 313. (f) Lindh,
R.; Ryde, U.; Schu¨tz, M. Theor. Chem. Acc. 1997, 97, 203. (g) Chen, W.
C.; Chang, N. W.; Yu, C. H. J. Phys. Chem. A 1998, 102, 2584. (h)
McMahon, R. J.; Halter, R. J.; Fimmen, R. L.; Wilson, R. J.; Peebles, S.
A.; Kuczkowski, R. L.; Stanton, J. F. J. Am. Chem. Soc. 2000, 122, 939.
(10) Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184. Schreiner, P.
R. J. Chem. Soc., Chem. Commun. 1998, 483.
(20) Alabugin, I. V.; Manoharan, M. J. Phys. Chem. A 2003, 107, 3363.
(21) Schmittel, M.; Kiau, S. Chem. Lett. 1995, 953.
(22) Maier, M. E.; Greiner, B. Liebigs Ann. Chem. 1992, 855.
(23) Jones, G. B.; Warner, P. M. J. Am. Chem. Soc. 2001, 123, 2134.
Konig, B.; Pitsch, W.; Klein, M.; Vasold, R.; Prall, M.; Schreiner, P. R. J.
Org. Chem. 2001, 66, 1742. Prall, M.; Wittkopp, A.; Fokin, A. A.; Schreiner,
P. R. J. Comput. Chem. 2001, 22, 1605. Chemistry of metalloenediynes:
Benites, P. J.; Rawat, D. W.; Zaleski, J. M. J. Am. Chem. Soc. 2000, 122,
7208. Rawat, D. S.; Zaleski, J. M. J. Am. Chem. Soc. 2001, 123, 9675.
Coalter, N. L.; Concolino, T. E.; Streib, W. E.; Hughes, C. G.; Rheingold,
A. L.; Zaleski, J. M. J. Am. Chem. Soc. 2000, 122, 3112. Chandra, T.;
Pink, M.; Zaleski, J. M. Inorg. Chem. 2001, 40, 5878. Rawat, D. S.; Zaleski,
J. M. Synth. Commun. 2002, 32, 1489. Rawat, D. S.; Benites, P. J.; Incarvito,
C. D.; Rheingold, A. L.; Zaleski, J. M. Inorg. Chem. 2001, 40, 1846.
Schmitt, E. W.; Huffman, J. C.; Zaleski, J. M. Chem. Commun. 2001, 167.
Rawat, D. S.; Zaleski, J. M. Chem. Commun. 2000, 2493. Benites, P. J.;
Lato, S. M.; Ellington, A. D.; Zaleski, J. M. J. Inorg. Biochem. 1999, 74,
75.
(24) Bhattacharyya, S.; Pink, M.; Baik, M. H.; Zaleski, J. M. Angew.
Chem., Int. Ed. 2005, 44, 592.
(25) Jones, G. B.; Plourde, G. W. Org. Lett. 2000, 2, 1757.
(26) Hoffner, J.; Schottelius, M. J.; Feichtinger, D.; Chen, P. J. Am. Chem.
Soc. 1998, 120, 376.
J. Org. Chem, Vol. 71, No. 3, 2006 963