286
L. YU ET AL.
13. Hao H, Wang G, Sun J. Enantioselective pharmaco-
kinetics of ibuprofen and involved mechanisms.
Drug Metab Rev 2005; 37: 215–234.
Conflict of Interest
There are no conflicts of interest.
14. Chang SY, Li W, Traeger SC, et al. Confirmation
that cytochrome P450 2C8 (CYP2C8) plays a minor
role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation
in vitro. Drug Metab Dispos 2008; 36: 2513–2522.
15. López-Rodríguez R, Novalbos J, Gallego-Sandín S,
et al. Influence of CYP2C8 and CYP2C9 polymor-
phisms on pharmacokinetic and pharmacody-
namic parameters of racemic and enantiomeric
forms of ibuprofen in healthy volunteers. Pharmacol
Res 2008; 58: 77–84.
16. Chen YK, Chen SQ, Li X, Zeng S. Quantitative
regioselectivity of glucuronidation of quercetin by
recombinant UDP-glucuronosyltransferases 1A9
and 1A3 using enzymatic kinetic parameters.
Xenobiotica 2005; 35: 943–954.
17. Gonzalez FJ, Kimura S, Tamura S, Gelboin HV.
Expression of mammalian cytochrome P450 using
baculovirus. Methods Enzymol 1991; 206: 93–99.
18. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi
M. Different effects of SLCO1B1 polymorphism
on the pharmacokinetics and pharmacodynamics
of repaglinide and nateglinide. J Clin Pharmacol
2008; 48: 311–321.
19. Dai D, Zeldin DC, Blaisdell JA, et al. Polymor-
phisms in human CYP2C8 decrease metabolism
of the anticancer drug paclitaxel and arachidonic
acid. Pharmacogenetics 2001; 11: 597–607.
References
1. Kawakami H, Ohtsuki S, Kamiie J, Suzuki T, Abe
T, Terasaki T. Simultaneous absolute quantification
of 11 cytochrome P450 isoforms in human liver
microsomes by liquid chromatography tandem
mass spectrometry with in silico target peptide
selection. J Pharm Sci 2011; 100: 341–352.
2. Rowbotham SE, Boddy AV, Redfern CP, Veal GJ,
Daly AK. Relevance of nonsynonymous CYP2C8
polymorphisms to 13-cis retinoic acid and pacli-
taxel hydroxylation. Drug Metab Dispos 2010;
38: 1261–1266.
3. Gao Y, Liu D, Wang H, Zhu J, Chen C. Functional
characterization of five CYP2C8 variants and
prediction of CYP2C8 genotype-dependent effects
on in vitro and in vivo drug–drug interactions.
Xenobiotica 2010; 40: 767–775.
4. Luckow VA, Summers MD. Trends in the development of
baculovirus expression vectors. Nat Biotechnol 1988; 6:47–55.
5. Demain AL, Vaishnav P. Production of recombi-
nant proteins by microbes and higher organisms.
Biotechnol Adv 2009; 27: 297–306.
6. Totah RA, Rettie AE. Cytochrome P450 2C8: sub-
strates, inhibitors, pharmacogenetics, and clinical
relevance. Clin Pharmacol Ther 2005; 77: 341–352.
7. Wattanachai N, Polasek TM, Heath TM, et al.
In vitro-in vivo extrapolation of CYP2C8-catalyzed
paclitaxel 6a-hydroxylation: effects of albumin on
in vitro kinetic parameters and assessment of
interindividual variability in predicted clearance.
Eur J Clin Pharmacol 2011; 67: 815–824.
8. Marsh S, Somlo G, Li X, et al. Pharmacogenetic anal-
ysis of paclitaxel transport and metabolism genes in
breast cancer. Pharmacogenomics J 2007; 7: 362–365.
9. Säll C, Houston JB, Galetin A. A comprehensive
assessment of repaglinide metabolic pathways:
impact of choice of in vitro system and relative
enzyme contribution to in vitro clearance. Drug
Metab Dispos 2012; 40: 1279–1289.
10. Tomalik-Scharte D, Fuhr U, Hellmich M, et al.
Effect of the CYP2C8 genotype on the pharmacoki-
netics and pharmacodynamics of repaglinide.
Drug Metab Dispos 2011; 39: 927–932.
11. Niemi M, Backman JT, Kajosaari LI, et al. Polymor-
phic organic anion transporting polypeptide 1B1 is
a major determinant of repaglinide pharmacoki-
netics. Clin Pharmacol Ther 2005; 77: 468–478.
12. Niemi M, Leathart JB, Neuvonen M, Backman JT,
Daly AK, Neuvonen PJ. Polymorphism in
CYP2C8 is associated with reduced plasma
concentrations of repaglinide. Clin Pharmacol Ther
2003; 74: 380–387.
20. Schoch GA, Yano JK, Wester MR, Griffin KJ,
Stout CD, Johnson EF. Structure of human
microsomal cytochrome P450 2C8. J Biol Chem
2004; 279: 9497–9503.
21. Jiang H, Zhong F, Sun L, Feng W, Huang ZX, Tan
X. Structural and functional insights into polymor-
phic enzymes of cytochrome P450 2C8. Amino
Acids 2011; 40: 1195–1204.
22. Jiang HL, Sun L, Huang ZX, Tan XS. Structural and
functional insights into CYP2C8.3: a genetic poly-
morph of cytochrome P450 2C8. Sci China Chem
2010; 53: 2200–2207.
23. Kaspera R, Naraharisetti SB, Evangelista EA,
Marciante KD, Psaty BM, Totah RA. Drug metabo-
lism by CYP2C8.3 is determined by substrate
dependent interactions with cytochrome P450
reductase and cytochrome b5. Biochem Pharmacol
2011; 82: 681–691.
24. Hamman MA, Thompson GA, Hall SD.
Regioselective and stereoselective metabolism of
ibuprofen by human cytochrome P450 2C. Biochem
Pharmacol 1997; 54: 33–41.
25. Green H, Soderkvist P, Rosenberg P, et al.
Pharmacogenetic studies of Paclitaxel in the treat-
ment of ovarian cancer. Basic Clin Pharmacol 2009;
104: 130–137.
26. Karazniewicz-Lada M, Luczak M, Glowka F. Phar-
macokinetic studies of enantiomers of ibuprofen
and its chiral metabolites in humans with different
Copyright © 2013 John Wiley & Sons, Ltd.
Biopharm. Drug Dispos. 34: 278–287 (2013)
DOI: 10.1002/bdd