Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
furnish the carboxyl radical F 18
rearrangement via spirocyclic intermediate
The second SET between the two radicals of Acr-Mes radical
and regenerates the photocatalyst and affords the anion I,
,
followed by a radical Smiles
to give radical
Ed., 2008, 47, 8727.
DOI: 10.1039/C9CC09272B
G
H.
10 X. Wu, Y. Zhang, Y. Wang, J. Ke, M. Jeret, R. N. Reddi, S. Yang, B.-
A. Song and Y. R. Chi, Angew. Chem., Int. Ed., 2017, 56, 2942.
11 X.-Y. Chen, C.-S. Zhang, L. Yi, Z.-H. Gao, Z.-X. Wang and S. Ye, CCS
Chem., 2019, 1, 343.
H
which is protonated to furnish the final salicylate 2.
12 Y. K. Liu, R. Li, L. Yue, B. J. Li, Y. C. Chen, Y. Wu and L. S. Ding, Org.
Lett., 2006, 8, 1521.
Conclusions
13 (a) R. S. Reddy, J. N. Rosa, L. F. Veiros, S. Caddick and P. M. P.
Gois, Org. Biomol. Chem., 2011, 9, 3126; (b) J. Zhao, C. Mück-
Lichtenfeld and A. Studer, Adv. Synth. Catal., 2013, 355, 1098; (c)
L. Ta, A. Axelsson and H. Sundén, Green Chem., 2016, 18, 686; (d)
Q. Wang, J. Chen and Y. Huang, Chem. - Eur. J., 2018, 24, 12806.
14 (a) A. A. Levy, H. C. Rains and S. Smiles, J. Chem. Soc., 1931,
3264; (b) C. M. Holden and M. F. Greaney, Chem. - Eur. J., 2017,
23, 8992; (c) I. Allart-Simon, S. Gérard and J. Sapi, Molecules,
2016, 21.
15 (a) R. Costil, H. J. A. Dale, N. Fey, G. Whitcombe, J. V. Matlock
and J. Clayden, Angew. Chem., Int. Ed., 2017, 56, 12533; (b) R.
Costil, Q. Lefebvre and J. Clayden, Angew. Chem., Int. Ed., 2017,
56, 14602; (c) F. Hu, H. Liu, J. Jia and C. Ma, Org. Biomol. Chem.,
2016, 14, 11076; (d) M. O. Kitching, T. E. Hurst and V. Snieckus,
Angew. Chem., Int. Ed., 2012, 51, 2925.
In summary, the oxidative Smiles rearrangement of O-aryl
salicylaldehydes using oxygen as the terminal oxidatnt was
developed under N-heterocyclic carbene and visible light
catalysis. Both electron-deficient and electron-rich aryls
worked well as the migrating group, giving the corresponding
aryl salicylates in good yields. Control experiments support
oxidation of the Breslow intermediate by oxygen in the presence
of acridium and NaI as the (co)catalyst, which provides a new
strategy for oxidative NHC catalysis under mild conditions. In this
reaction, one C-O bond is cleavaged with two new C-O bonds
formation. Further investigations on dual N-heterocyclic
carbene/photoredox catalysis and detailed mechanistic studies
are currently underway in our laboratory.
16 D. Janssen-Müller, S. Singha, F. Lied, K. Gottschalk and F. Glorius,
Angew. Chem., Int. Ed., 2017, 56, 6276.
17 (a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322; (b) M. N. Hopkinson, A. Tlahuext-Aca and F.
Glorius, Acc. Chem. Res., 2016, 49, 2261; (c) J.-R. Chen, X.-Q. Hu,
L.-Q. Lu and W.-J. Xiao, Acc. Chem. Res., 2016, 49, 1911; (d) K. L.
Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116, 10035; (e)
J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
2011, 40, 102; (f) L. Marzo, S. K. Pagire, O. Reiser and B. König,
Angew. Chem., Int. Ed., 2018, 57, 10034.
Acknowledgements
Financial support from the National Natural Science
Foundation of China (Nos 21425207, 21521002, 21672237,
21702208), and the Chinese Academy of Sciences is greatly
acknowledged.
18 (a) S.-F. Wang, X.-P. Cao and Y. Li, Angew. Chem., Int. Ed., 2017,
56, 13809; (b) J. C. Gonzalez-Gomez, N. P. Ramirez, T. Lana-
Villarreal and P. Bonete, Org. Biomol. Chem., 2017, 15, 9680.
19 D. A. DiRocco and T. Rovis, J. Am. Chem. Soc., 2012, 134, 8094.
20 W. Yang, W. Hu, X. Dong, X. Li and J. Sun, Angew. Chem., Int. Ed.,
2016, 55, 15783.
Conflicts of interest
There are no conflicts to declare.
Notes and references
21 E. Yoshioka, M. Inoue, Y. Nagoshi, A. Kobayashi, R. Mizobuchi, A.
Kawashima, S. Kohtani and H. Miyabe, J. Org. Chem., 2018, 83,
8962.
22 L. Dai, Z.-H. Xia, Y.-Y. Gao, Z.-H. Gao and S. Ye, Angew. Chem., Int.
Ed., 2019, DOI: 10.1002/anie.201909017.
1 (a) D. M. Flanigan, F. Romanov-Michailidis, N. A. White and T.
Rovis, Chem. Rev., 2015, 115, 9307; (b) D. Enders, O. Niemeier
and A. Henseler, Chem. Rev., 2007, 107, 5606; (c) M. N.
Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014,
510, 485.
23 (a) K. Ohkubo, K. Mizushima, R. Iwata and S. Fukuzumi, Chem.
Sci., 2011, 2, 715; (b) J. P. Markham, B. Wang, E. D. Stevens, S. C.
Burris and Y. Deng, Chemistry, 2019, 25, 6638; (c) L. Chen, H. Li, P.
Li and L. Wang, Org Lett, 2016, 18, 3646; (d) W. Song, K. Dong and
M. Li, Org Lett, 2019, DOI: 10.1021/acs.orglett.9b03905.
24 (a) L. Li, W. Liu, H. Zeng, X. Mu, G. Cosa, Z. Mi and C.-J. Li, J. Am.
Chem. Soc., 2015, 137, 8328; (b) W. Liu, X. Yang, Y. Gao and C.-J.
Li, J. Am. Chem. Soc., 2017, 139, 8621.
25 M.-C. Fu, R. Shang, B. Zhao, B. Wang and Y. Fu, Science, 2019,
363, 1429.
26 N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075.
27 A. K. Khatana, V. Singh, M. K. Gupta and B. Tiwari, Synthesis,
2018, 50, 4290.
2 J. A. Murry, D. E. Frantz, A. Soheili, R. Tillyer, E. J. J. Grabowski and
P. J. Reider, J. Am. Chem. Soc., 2001, 123, 9696.
3 E. Ciganek, Synthesis, 1995, 1995, 1311.
4 S. S. Sohn, E. L. Rosen and J. W. Bode, J. Am. Chem. Soc., 2004,
126, 14370.
5 C. Burstein and F. Glorius, Angew. Chem., Int. Ed., 2004, 43, 6205.
6 (a) B. E. Maki, A. Chan, E. M. Phillips and K. A. Scheidt, Org. Lett.,
2007, 9, 371; (b) B. E. Maki and K. A. Scheidt, Org. Lett., 2008, 10,
4331; (c) S. Lu, S. B. Poh, W.-Y. Siau and Y. Zhao, Angew. Chem.,
Int. Ed., 2013, 52, 1731.
7 T. Uno, T. Inokuma and Y. Takemoto, Chem. Commun., 2012, 48,
1901.
8 (a) S. De Sarkar, S. Grimme and A. Studer, J. Am. Chem. Soc., 2010,
132, 1190; (b) S. De Sarkar and A. Studer, Angew. Chem., Int. Ed.,
2010, 49, 9266; (c) Z.-Q. Rong, M.-Q. Jia and S.-L. You, Org. Lett.,
2011, 13, 4080; (d) A. G. Kravina, J. Mahatthananchai and J. W.
Bode, Angew. Chem., Int. Ed., 2012, 51, 9433; (e) J. Mo, X. Chen
and Y. R. Chi, J. Am. Chem. Soc., 2012, 134, 8810.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins