Tunable Luminescence of Photochromic Bisthienylethenes
325
2-bromo-5-methylthiophene was obtained (74.3 g, 84%). δH (500 MHz,
CDCl3) 2.42 (s, 3H), 6.51 (d, 1H, J 3.63), 6.82 (d, 1H, J 3.63).
6.99 (d, 8H, J 8.42, Ar–H), 7.05 (d, 8H, J 8.54, Ar–H), 7.22 (d, 4H,
J 8.54, Ar–H). m/z 980.6 (M+).
5-Bromo-3-chloromethyl-2-methylthiophene 9
Acknowledgments
A stream of dry HCl gas was purged into a vessel containing a vig-
orously stirred mixture of 2-bromo-5-methylthiophene (54 g, 0.3 mol),
trioxane (15 mol), and anhydrous zinc chloride in CCl4 (150 mL) for 1 h
at room temperature, and for another 4 h at 45◦C. The resulting solution
was poured into water; the organic layer was separated and washed with
H2O and saturated NaHCO3. After the solvent was removed, distilla-
tion of the resulting oil under reduced pressure (132–134◦C/13 mmHg)
gave a yellow oily liquid (64%). δH (500 MHz, CDCl3) 2.39 (s, 3H),
4.46 (s, 2H), 6.93 (s, 1H). m/z 225.9 (M+, 42%), 223.9 (M+ − 2, 31),
191 (M − Cl, 92), 189 (M − Cl − 2, 100).
The authors acknowledge the support from NSFC, China
(20476027, 90401026), the Education Committee of
Shanghai, and the Scientific Committee of Shanghai.
References
[1] J. P. Malval, I. Gosse, J. P. Morand, R. Lapouyade, J. Am. Chem.
Soc. 2002, 124, 904. doi:10.1021/JA0167203
[2] (a) Molecular Switches (Ed. B. L. Feringa) 2001 (Wiley–VCH:
Weinheim).
2-(5-Bromo-2-methylthiophen-3-yl)acetonitrile 10
KCN (10 g, 0.15 mol) and (n-Bu)4N+Br− (2.5 g) were dissolved in
water (50 mL) at room temperature. To this solution was added com-
pound 9 (22.4, 0.1 mol) and benzene (50 mL), and the resulting solution
was stirred at reflux for 4 h. After being cooled to room tempera-
ture, the reaction mixture was poured into water and extracted with
CH2Cl2. The solvent was removed by distillation, and the crude product
was purified by column chromatography on silica gel with petroleum
ether/ethyl acetate (10 : 1) as eluent. δH (500 MHz, CDCl3) 2.35 (s, 3H),
3.54 (s, 2H), 6.91 (s, 1H). m/z 217 (M+ + 2, 61%), 215 (M+, 61), 190
(M − CN + 1, 100), 188 (M − CN − 1, 97).
(b) V. Balzani, M. Venturi, A. Credi, Molecular Devices and
Machines 2003, Ch. 7 (Wiley–VCH: Weinheim).
[3] W. Yuan, L. Sun, W. Huang, H. Tang, Y. Wen, G. Jiang, L. Jiang,
Y. Song, H. Tian, D. B. Zhu, Adv. Mater. 2005, 17, 156.
doi:10.1002/ADMA.200400953
[4] M. M. Krayushkin, Chem. Heterocycl. Comp. 2001, 37, 15.
doi:10.1023/A:1017584616165
[5] (a)M. Irie, Chem. Rev. 2000, 100, 1685. doi:10.1021/CR980069D
(b) H. Tian, S. J. Yang, Chem. Soc. Rev. 2004, 33, 85.
doi:10.1039/B302356G
[6] T. Mrozek, H. Görner, J. Daub, Chem. Eur. J. 2001,
7, 1028. doi:10.1002/1521-3765(20010302)7:5<1028::AID-
CHEM1028>3.3.CO;2-Z
[7] H. Tian, H.Y. Tu, Adv. Mater. 2000, 12, 1597. doi:10.1002/1521-
4095(200011)12:21<1597::AID-ADMA1597>3.0.CO;2-Q
[8] (a) T. B. Norsten, N. R. Branda, J. Am. Chem. Soc. 2001, 123,
1784. doi:10.1021/JA005639H
2,3-Bis(5-bromo-2-methylthiophen-3-yl)maleonitrile 4
Aqueous NaOH solution (50%, 30 mL) containing (n-Bu)4N+Br−
(0.42 g, 2 mmol) was added to a mixture of compound 10 and CCl4
(120 mL) at 40◦C, and the resulting solution was stirred for 1.5 h. The
reaction mixture was poured into water, and the product extracted with
ether and chloroform. After the solvent was removed, chromatography
(petroleum ether/CH2Cl2, 2 : 1) gave pure trans- and cis-product.
Cis-form (RF 0.2), yellow solid, mp 123–125◦C. δH (500 MHz,
CDCl3) 2.20 (s, 6H, CH3), 6.63 (s, 2H, CH). m/z 430.9 (M+, 63%),
432.9 (M+, 27).
(b) E. Murguly, T. B. Norsten, N. R. Branda, Angew. Chem.
Int. Ed. 2001, 40, 1752. doi:10.1002/1521-3773(20010504)40:9
<1752::AID-ANIE17520>3.3.CO;2-N
[9] G. M. Tsivgoulis, J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1995,
34, 1119. doi:10.1002/ANIE.199511191
[10] H. Tian, B. Qin, R. Yao, X. Zhao, S. Yang, Adv. Mater. 2003, 15,
2104. doi:10.1002/ADMA.200305425
[11] K. E. Maly, M. D. Wand, R. R. Lemieux, J. Am. Chem. Soc. 2002,
124, 7898. doi:10.1021/JA025954Z
[12] S. Kobatake, S. Kuma, M. Irie, Bull. Chem. Soc. Jpn. 2004, 77,
945. doi:10.1246/BCSJ.77.945
[13] J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. Esch,
B. L. Feringa, Science 2004, 304, 278. doi:10.1126/SCIENCE.
1095353
[14] (a) K. Matsuda, M. Ikeda, M. Irie, Chem. Lett. (Jpn.) 2004,
33, 457.
Trans-form (RF 0.6), yellow powder, mp 147–149◦C. δH (500 MHz,
CDCl3) 2.54 (s, 3H, CH3), 2.55(s, 3H, CH3), 7.16 (s, 2H, CH). m/z
430.9 (M+), 432.9 (M+).
2-(5-{4-[Bis(4-butylphenyl)amino]phenyl}-2-methylthiophen-3-
yl)-3-(5- bromo-2-methylthiophen-3-yl)maleonitrile 1 and
2,3-Bis(5-{4-[bis(4-butylphenyl)amino]phenyl}-2-
methylthiophen-3-yl)maleonitrile 2
The resulting boric acid (1.5 g, 3.5 mmol) was added to a mixture
of aqueous Na2CO3 (2 M, 10 mL) and THF (30 mL). 2,3-Bis(5-bromo-
2-methylthiophen-3-yl)maleonitrile (0.52 g, 1.3 mmol) and Pd(PPh3)4
catalyst were then added. The reaction mixture was stirred at reflux
under nitrogen overnight. After completion of the reaction, the mixture
was poured into water, the organic layer separated, and the aqueous layer
extracted with ether three times.The combined organic phases were con-
centrated under reduced pressure, subjected to column chromatography
(CH2Cl2/petroleum ether, 1 : 3), and the products (1 and 2, shown in
Scheme 1) were obtained.
(b) T.Yamaguchi,Y. Fujita, M. Irie, Chem. Commun. 2004, 1010.
doi:10.1039/B401207K
(c) T. Yamaguchi, K. Nomiyama, M. Isayama, M. Irie, Adv.
Mater. 2004, 16, 643. doi:10.1002/ADMA.200305815
[15] J. Ern, A. T. Bens, H. D. Martin, S. Mukamel, S. Tretiak,
K. Tsyganenko, K. Kuldova, H. P. Trommsdorff, C. J. Kryschi,
J. Phys. Chem. A 2001, 105, 1741. doi:10.1021/JP0031956
[16] M. Irie, T. Eriguchi, T. Takada, K. Uchida, Tetrahedron 1997, 53,
12263. doi:10.1016/S0040-4020(97)00558-9
[17] S. H. Kawai, S. L. Gilat, J. M. Lehn, Eur. J. Org. Chem.
1999, 2359. doi:10.1002/(SICI)1099-0690(199909)1999:9
<2359::AID-EJOC2359>3.3.CO;2-R
[18] A. Mulder, A. Jukovic, L. N. Lucas, J. Esch, B. L. Feringa,
J. Huskens, D. N. A. Reinhoudt, Chem. Commun. 2002, 2734.
doi:10.1039/B208692A
[19] A. J. Myles, B. Gorodetsky, N. R. Branda, Adv. Mater. 2004, 16,
922. doi:10.1002/ADMA.200306227
Compound 1 was obtained as an orange solid (0.22 g, 24%), RF 0.22
(Calc. for C40H38BrN3S2: C 68.2, H 5.4, N 6.0. Found: C 68.3, H 5.4,
N 6.0%). δH (500 MHz, CDCl3) 0.94 (t, 6H, CH3), 1.37 (m, 4H, CH2),
1.59 (m, 4H, CH2), 2.57 (t, 4H, CH2), 2.09 (s, 3H, thiophene CH3),
2.27 (s, 3H, thiophene CH3), 6.78 (s, 1H, thiophene H), 7.03 (s, 1H,
thiophene H), 6.95 (d, 2H, J 8.6, Ar–H), 7.00 (d, 4H, J 8.31, Ar–H), 7.14
(d, 4H, J 8.31, Ar–H), 7.20 (d, 2H, J 8.6, Ar–H). m/z 703 (M+), 704
(M+ + 1).
Compound 2 was obtained as a yellow solid (0.14 g, 12.4%), RF
0.45, mp 61–63◦C (Calc. for C66H68N4S2: C 80.8, H 7.0, N 5.7. Found:
C 80.6, H 7.0, N 5.8%). δH (500 MHz, CDCl3) 0.94 (t, 12H, CH3),
1.37 (m, 8H, CH2), 1.60 (m, 8H, CH2), 2.57 (t, 8H, CH2), 2.22 (s, 6H,
thiophene CH3), 7.09 (s, 2H, thiophene H), 6.93 (d, 4H, J 8.41, Ar–H),
[20] (a) H. Tian, B. Z. Chen, H. Y. Tu, K. Müllen, Adv. Mater. 2002,
14, 918. doi:10.1002/1521-4095(20020618)14:12<918::AID-
ADMA918>3.0.CO;2-Y