R. P. Frutos et al. / Tetrahedron Letters 52 (2011) 2465–2467
2467
ArIIB(OH)2
+
Acknowledgment
4
The authors wish to acknowledge Professor Peter Wipf for valu-
able suggestions and insightful comments.
MeOH
ArI
N
ArI
N
ArI
O
O
O
References and notes
N
Ar
H
N
N
Ar
NH
H
N
Ar
H
H
H
N
O
O
1. Wu, J.-P.; Emeigh, J.; Gao, A. D.; Goldberg, D. R.; Kuzmich, D.; Miao, C.; Potocki, I.;
Qian, K. C.; Sorcek, R. J.; Jeanfavre, D. D.; Kishimoto, K.; Mainolfi, E. A.; Nabozny,
G., Jr.; Peng, C.; Reilly, P.; Rothlein, R.; Sellati, R. H.; Woska, J. R., Jr.; Chen, S.;
Gunn, J. A.; O’Brien, D.; Norris, S. H.; Kelly, T. A. J. Med. Chem. 2004, 47, 5356.
2. Frutos, R. P.; Eriksson, M.; Wang, X.-J.; Byrne, D.; Varsolona, R.; Johnson, M.;
Nummy, L.; Krishnamurthy, D.; Senanayake, C. H. Org. Process Res. Dev. 2005, 9,
137.
3. Wang, X-j.; Zhang, L.; Xu, Y.; Krishnamurthy, D.; Varsolona, R.; Nummy, L.;
Shen, S.; Frutos, R. P.; Byrne, D.; Chung, J. C.; Farina, V.; Senanayake, C. H.
Tetrahedron Lett. 2005, 46, 273.
4. X.-J. Wang, T. Wirth, T. Nicola, L. Zhang, R. P. Frutos, Y. Xu, D. Krishnamurihy, L.
J. Nummy, R. J. Varsolona, J. Kroeber, C. H. Senanayake. Patent number WO
2006/014828 A1, 2006.
5. Frutos, R. P.; Johnson, M. Tetrahedron Lett. 2003, 44, 6509.
6. Appel, R.; Kleinstuck, R.; Ziehn, K. Chem. Ber. 1971, 104, 1335.
7. Siu, J.; Baxendale, I. R.; Lewthwaite, R. A.; Ley, S. V. Org. Biomol. Chem. 2005, 3,
3140.
N
O
H
MeOH
O
II
O
O
MeO
B
Ar
13
ArI
B
O
ArII
15
H
O
H
14
B
O
II
Ar
ArI
O
O
2
ArIIB(OH)2
N
N
Ar
N
N Ar
H
O
O
NH
HO
B
H
O
H2O
N
ArII
B
O
II
Ar
16
17
8. (a) Ishihara, K.; Kondo, S.; Yamamoto, H. Synlett 2001, 1371; (b) Ishihara, K.;
Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
Scheme 2. Possible mechanism for the cyclodehydration.
9. Frutos, R. P.; Stehle, S.; Nummy, L.; Yee, N. K. Tetrahedron: Asymmetry 2001, 12,
101.
10. Compound 4a: 1H NMR (400 MHz, CDCl3) d 1.27 (s, 3H); 3.00–3.60 (m, 4H), 3.34
(s, 6H), 4.39 (dd, J = 5.6, 5.6 Hz, 1H), 6.12 (dd, J = 6.0, 6.0 Hz, 1H), 6.23 (s, 1H),
7.28 (dd, J = 2.0, 2.0 Hz, 1H), 7.33–7.37 (m, 2H), 7.77–7.81 (m, 2H), 7.81 (d,
J = 2.0, 2.0 Hz, 2H) 9.98 (s, 1H).
11. Typical experimental procedure: Urea 4 (0.96 mmol) was charged to a 50 mL 1-
neck round bottom equipped with a Dean–Stark trap, N2 line, and reflux
from trapping water, preventing the reaction of water with a
transient intermediate like 14, and the formation of urea 9, which
itself was ruled out as a possible intermediate for the transforma-
tion (Eq. 4). In conclusion, a new, safe and efficient synthesis for
the core of 1H-imidazo[1,2-a]imidazol-2-one LFA-1 inhibitors
condenser. Boronic acid
6
(0.19 mmol), toluene (15 mL), and
was developed by means of an unprecedented boronic acid cyc-
lodehydration. The new protocol provides the desired products
cleanly without the isolation issues caused by reagents used in
earlier approaches and it was implemented on a >1 kg scale.
The exact sequence of events involved in this transformation is
not well defined, but control experiments shed light on possible
mechanistic pathways.
trimethylorthoformate (0.19 mmol) were charged and the mixture was
placed in a preheated oil bath (135 °C) and refluxed for 16 h. Afterward, the
solution was cooled and washed with dilute NaHCO3 solution. The organic
layer was collected and concentrated under reduced pressure (rotorvap) to
afford the desired crude product as an amber oil in 80–95% assay yield.
12. Compound 2a: 1H NMR (400 MHz, CDCl3) d 1.80 (s, 3H), 3.26 (d, J = 13.6 Hz, 1H),
3.39 (d, J = 13.6 Hz), 6.94 (d, J = 1.2 Hz, 1H), 6.97 (d, J = 1.2 Hz, 1H), 7.01 (d,
J = 8.4 Hz, 2H), 7.26 (t, J = 1.8 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 1.8 Hz,
2H).