Gold Nanoclusters Protected by Select Peptides
A R T I C L E S
interchain hydrogen bonds. Similar issues are expected to affect
the stability of SAMs formed on small gold clusters, although
for them the radial distribution of the ligands makes the
interchain distance a subtle function of the distance from the
core as well as of the core size and geometry.7
increase the possibility that exogenous species, such as solvent
or electrolytes, could penetrate the capping monolayer, which
for some applications might be quite unsought. In this paper,
we describe the results of a study aimed at preparing gold
clusters protected by peptides displaying a definite conforma-
tional preference and thus remarkable stiffness. We used a series
of structurally well-defined peptide systems based on the
R-aminoisobutyric acid (Aib) residue. The Aib homooligomers
are characterized by marked steric hindrance at the R-carbon,
resulting in restricted torsional freedom.19,20 Consequently, they
are significantly rigid even when they are short,21 which is a
general feature shared by oligopeptides based on CR-tetrasub-
stituted R-amino acids.19,20 It is worth stressing that this 3D-
structural propensity is not encountered with peptide systems
based on coded R-amino acids, which start to form helices only
for rather long oligomers.22 Instead, the tendency of Aib
homopeptides to form â-turns and 310-helices starts from the
tripeptide.20 In the 310-helix, each intramolecular CdO‚‚‚H-N
hydrogen bond involves residues i and i + 3 and a single helical
turn requires 3.24 amino acid residues,21b while the R-helix is
characterized by a pitch of 3.63 residues/turn. Formation of the
310-helix is accompanied by the onset of a strong oriented dipole
moment that develops along the peptide backbone.23 As opposed
to simple alkanethiols, for which the increase in the number of
methylene units increases the flexibility of the ligand, the key
motif of the selected peptides is that the increase of the number
of units is accompanied by a concomitant increase of the number
of intramolecular hydrogen bonds and thus of the peptide
stiffness. This feature and, particularly, the unique relative
rigidity of short Aib homopeptides are being successfully
exploited as spacers or templates in electrochemical and
spectroscopic investigations.24-26 Since 2D or 3D SAM forma-
tion already causes the conformational freedom of alkanethiols
to decrease dramatically, we expected that for the same reason
our peptides would have behaved as even more rigid ligands.
Several studies have been carried out on gold nanoparticles
protected by peptides, particularly in connection to possible
biomedical applications.4e,8 The core diameters employed are
generally larger than 10 nm, and thus the properties of the
particles resemble those of the bulk material; few investigations
concern MPCs in the size region marking the transition to the
molecular-like behavior (1-2 nm). Murray and co-workers
described the synthesis of tiopronin MPCs (down to 1.8 nm
size) and their modification through ligand place exchange to
prepare nanoparticles displaying redox and fluorophoric proper-
ties.9 Peptide backbones have been added onto preformed MPCs
by ligand place exchange10 or multistep synthesis.11 In addition
to place exchange, mixed monolayers based on tiopronin or
glutathione ligands were shown to directly form under controlled
conditions.12 It has also been reported that large gold nanopar-
ticles can be prepared by using the amino acid itself as the
reductant.13 Glutathione MPCs proved to be a particularly
efficient ligand to passivate gold nucleation to very limited
amounts of atoms, yielding molecule-like particles displaying
interesting optical properties.14 Metal nanoparticles protected
by single amino acids or linear peptides showed a subtle
dependence of size and stability on the metal/ligand combina-
tion.15 Interesting studies for applications in the area of nuclear
targeting are also worth mentioning, in which gold nanoclusters
are capped by suitable peptides for crossing cellular mem-
branes.16 Amino acids and peptides are also useful to create
complex assemblies of nanoparticles17 and to form stable
functionalized gold nanoparticles for molecular recognition.8,18
As opposed to the SAMs formed on extended surfaces, the
radial orientation of the thiolate ligands in small MPCs make
their outer terminals prone to lateral motion. These fluctuations
In this paper, we describe the synthesis, characterization, and
properties of peptide MPCs having average core diameters
ranging from 1.1 to 2.3 nm. We used the thiolated peptides 0-3,
where the number of amino acids is such to allow forming
structures characterized by zero, one, two, or three intramo-
lecular CdO‚‚‚H-N hydrogen bonds, respectively.
(7) (a) Hostetler, M. J.; Stokes, J. J.; Murray, R. W. Langmuir 1996, 12, 3604-
3612. (b) Boal, A.; Rotello, V. M. Langmuir 2000, 16, 9527-9532.
(8) Rosi, N. L.; Mirkin, C. A. Chem. ReV. 2005, 105, 1547-1562.
(9) (a) Templeton, A. C.; Chen, S.; Gross, S. M.; Murray, R. W. Langmuir
1999, 15, 66-76. (b) Templeton, A. C.; Cliffel, D. E.; Murray, R. W. J.
Am. Chem. Soc. 1999, 121, 7081-7089. (c) Huang, T.; Murray, R. W.
Langmuir 2002, 18, 7077-7081.
(10) (a) Pengo, P.; Broxterman, Q. B.; Kaptein, B.; Pasquato, L.; Scrimin, P.
Langmuir 2003, 19, 2521-2524. (b) Le´vy, R.; Thanh, N. T. K.; Doty, C.;
Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. J. Am.
Chem. Soc. 2004, 126, 10076-10084.
(11) (a) Templeton, A. C.; Hostetler, M. J.; Warmoth, E. K.; Chen, S.; Hartshorn,
C. M.; Krishnamurthy, V. M.; Forbes, M. D. E.; Murray, R. W. J. Am.
Chem. Soc. 1998, 120, 4845-4849. (b) Fan, J.; Chen, S.; Gao, Y. Colloid
Surf., B 2003, 28, 199-207. (c) Sung, K.-M.; Mosley, D. W.; Peelle, B.
R.; Zhang, S.; Jacobson, J. M. J. Am. Chem. Soc. 2004, 126, 5064-5065.
(12) Zheng, M.; Huang, X. J. Am. Chem. Soc. 2004, 126, 12047-12054.
(13) (a) Selvakannan, P. R.; Mandal, S.; Phadtare, S.; Gole, A.; Pasricha, R.;
Sastry, M. Langmuir 2003, 19, 3545-3549. (b) Bhargava, S. K.; Booth, J.
M.; Agrawal, S.; Coloe, P.; Kar, G. Langmuir 2005, 21, 5949-5956.
(14) (a) Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten,
R. L. J. Phys. Chem. B 1998, 102, 10643-10646. (b) Schaaff, T. G.;
Whetten, R. L. J. Phys. Chem. B 2000, 104, 2630-2641. (c) Link, S.;
El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. Chem. Phys. Lett. 2002,
356, 240-246. (d) Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.;
Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106, 3410-3415.
(e) Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T.
J. Am. Chem. Soc. 2005, 126, 6518-6519. (f) Negishi, Y.; Nobusada, K.;
Tsukuda, T. J. Am. Chem. Soc. 2005, 127, 5261-5270.
(15) Slocik, J. M.; Wright, D. W. Biomacromolecules 2003, 4, 1135-1141.
(16) (a) Tkachenko, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.;
Anderson, M. F.; Franzen, S.; Feldheim, D. L. J. Am. Chem. Soc. 2003,
125, 4700-4701. (b) Xie, H.; Tkachenko, A. G.; Glomm, W. R.; Ryan, J.;
Brennaman, M. K.; Papanikolas, J. M.; Franzen, S.; Feldheim, D. L. Anal.
Chem. 2003, 75, 5797-5805. (c) Tkachenko, A. G.; Xie, H.; Liu, Y.;
Coleman, D.; Ryan, J.; Glomm, W. R.; Shipton, M. K.; Franzen, S.;
Feldheim, D. L. Bioconjugate Chem. 2004, 15, 482-490.
(17) (a) Wong, M. S.; Cha, J. N.; Choi, K.-S.; Deming, T. J.; Stucky, G. D.
Nano Lett. 2002, 2, 583-587. (b) Chakrabarti, R.; Klibanov, A. M. J. Am.
Chem. Soc. 2003, 125, 12531-12540. (c) Stevens, M. M.; Flynn, N. T.;
Wang, C.; Tirrell, D. A.; Langer, R. AdV. Mater. 2004, 16, 915-918. (d)
Zhong, Z.; Subramanian, A. S.; Highfield, J.; Carpenter, K.; Gedanken, A.
Chem. Eur. J. 2005, 11, 1473-1478.
(18) Wang, Z.; Le´vy, R.; Fernig, D. G.; Brust, M. Bioconjugate Chem. 2005,
16, 497-500.
(19) Karle, I.; Balaram, P. Biochemistry 1990, 29, 6747-6756.
(20) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers (Pept.
Sci.) 2001, 60, 396-419.
(21) (a) Toniolo, C.; Bonora, G. M.; Barone, V.; Bavoso, A.; Benedetti, E.; Di
Blasio, B.; Grimaldi, P.; Lelj, F.; Pavone, V.; Pedone, C. Macromolecules
1985, 18, 895-902. (b) Toniolo, C.; Benedetti, E. Trends Biochem. Sci.
1991, 16, 350-353.
(22) Goodman, M.; Toniolo, C.; Pallai, P. In Forum Peptides; Castro, B.,
Martinez, J., Eds.; Dhor: Nancy, France, 1985; pp 146-174.
(23) Shin, Y.-G.; Newton, M. D.; Isied, S. S. J. Am. Chem. Soc. 2003, 125,
3722-3732.
9
J. AM. CHEM. SOC. VOL. 128, NO. 1, 2006 327