10.1002/anie.202105383
Angewandte Chemie International Edition
RESEARCH ARTICLE
R. Ferre, M. R. Lazear, M. M. Hayward, J. C. Kath, B. F. Cravatt,
Cell Chem. Bio. 2017, 24, 1388−1400.
[14] F. Rossari, F. Minutolo, E. Orciuolo, J. Hematol. Oncol. 2018,
11, 1−14.
[15] A. C. Carrera, K. Alexandrov, T. M. Roberts, Proc. Natl. Acad.
Sci. U. S. A. 1993, 90, 442−446.
[16] R. Liu, Z. Yue, C. C. Tsai, J. Shen, J. Am. Chem. Soc. 2019,
141, 6553−6560.
[17] D. A. Shannon, R. Banerjee, E. R. Webster, D. W. Bak, C. Wang,
E. Weerapana, J. Am. Chem. Soc. 2014, 136, 3330−3333.
[18] C. C. Ward, J. L. Kleinman, D. K. Nomura, ACS Chem. Biol.
2017, 12, 1478−1483.
[19] A. Cuesta, J. Taunton, Annu. Rev. Biochem. 2019, 88, 365−381.
[20] M. Gehringer, S. A. Laufer, J. Med. Chem. 2019, 62, 5673−5724.
[21] S. M. Hacker, K. M. Backus, M. R. Lazear, S. Forli, B. E. Correia,
B. F. Cravatt, Nat. Chem. 2017, 9, 1181−1190.
carbonyl boronic acid, which is a low-reactivity
electrophile, can be used to design highly selective
kinase inhibitors by maximizing molecular recognition.
Such compounds might be attractive tools for chemical
biology studies given recent interests in the
development of reversible covalent inhibitors,[29,31,43] but
could also serve as potential drug candidates in cases
where improved potency might be desirable once they
are fully optimized. We have also employed label-free
mass spectrometry to evaluate potential off-targets of
our compounds at proteome-wide level in different
mammalian cell lines. In addition to the expected target,
we also identified a few additional kinases as well as
some non-kinases as potnetial off-targets. Unlike
protein kinases which have a known catalytic lysine
residue in their kinase active sites, non-kinase targets
possess solvent-exposed lysine residues, thus
rendering them potentially susceptible to probe labeling.
[22] Q. Zhao, X. Ouyang, X. Wan, K. S. Gajiwala, J. C. Kath, L. H.
Jones, A. L. Burlingame, J. Taunton, J. Am. Chem. Soc. 2017,
139, 680−685.
[23] S. E. Dalton, L. Dittus, D. A. Thomas, M. A. Convery, J. Nunes,
J. T. Bush, J. P. Evans, T. Werner, M. Bantscheff, J. A. Murphy,
S. Campos, J. Chem. Am. Soc. 2018, 140, 932−939.
[24] U. P. Dahal, A. M. Gilbert, R. S. Obach, M. E. Flanagan, J. M.
Chen, C. Garcia-Irizarry, J. T. Starr, B. Schuff, D. P. Uccello, J.
A. Young, Med. Chem. Commun. 2016, 7, 864−872.
[25] J. Pettinger, K. Jones, M. D. Cheeseman, Angew. Chem. Int.
Ed. 2017, 56, 15200−15209.
Acknowledgements
Financial support was provided by the Synthetic
Biology Research & Development Programme (SBP) of
National Research Foundation (SBP-P4 and SBP-P8)
for Shao Q. Yao, the National Medical Research Council
(NMRC) via the Open Fund – Young Individual
Research Grant for Klement Foo and by the Agency for
Science, Technology and Research (A*STAR) via the
A*STAR Graduate Scholarship (AGS) for David Quach.
Financial support from CAMS Innovation Fund for
Medical Sciences (CIFMS) (2017-I2M-4−005) of China
is also acknowledged. The ABL protein construct and
glycerol stock were prepared by Yvonne Y. W. Tan and
Dario B. Heymann. We thank Zi Ye for support in MS
data analysis.
[26] P. Martín-Gago, C. A. Olsen, Angew. Chem. Int. Ed. 2019, 58,
957−966.
[27] L. H. Jones, Angew. Chem. Int. Ed. 2018, 57, 9220−9223.
[28] D. E. Mortenson, G. J. Brighty, L. Plate, G. Bare, W. Chen, S.
Li, H. Wang, B. F. Cravatt, S. Forli, E. T. Powers, K. B.
Sharpless, I. A. Wilson, J. W. Kelly, J. Am. Chem. Soc. 2018,
140, 200−210.
[29] I. M. Serafimova, M. A. Pufall, S. Krishnan, K. Duda, M. S.
Cohen, R. L. Maglathlin, J. M. McFarland, R. M. Miller, M. Frödin,
J. Taunton, Nat. Chem. Biol. 2012, 8, 471−476.
[30] S. Cambray, J. Gao, Acc. Chem. Res. 2018, 51, 2198-2206.
[31] G. Akçay, M. A. Belmonte, B. Aquila, C. Chuaqui, A.W. Hird, M.
L. Lamb, P. B. Rawlins, N. Su, S. Tentarelli, N. P. Grimster, Q.
Su, Nat. Chem. Biol. 2016, 12, 931−936.
[32] T. Zhou, L. Parillon, F. Li, Y. Wang, J. Keats, S. Lamore, Q. Xu,
W. Shakespeare, D. Dalgarno, X. Zhu, Chem. Biol. Drug Des.
2007, 70, 171−181.
Keywords: cancer • lysine • covalent • reversible • proteomics
[1]
[2]
R. Kurzrock, J. U. Gutterman, M. Talpaz, N. Engl. J. Med. 1988,
319, 990−998.
T. G. Lugo, A. M. Pendergast, A. J. Muller, O. N. Witte, Science
1990, 247, 1079−1082.
E. Jabbour, H. Kantarjian, Am. J. Hematol. 2016, 91, 252−265.
H. M. Kantarjian, M. Baccarani, E. Jabbour, G. Saglio, J. E.
Cortes, Clin. Cancer Res. 2011, 17, 1674−1683.
Z. Iqbal, A. Aleem, M. Iqbal, M. I. Naqvi, A. Gill, A. S. Taj, A.
Qayyum, N. ur-Rehman, A. M. Khalid, I. H. Shah, M. Khalid, R.
Haq, M. Khan, S. M. Baig, A. Jamil, M. N. Abbas, M. Absar, A.
Mahmood, M. Rasool, T. Akhtar, PLos One 2013, 8, e55717.
T. Anagnostou, M. R. Litzow, Blood Lymphat. Cancer 2017,
2018, 1−9.
[33] P. M. S. D. Cal, J. B. Vicente, E. Pires, A. V. Coelho, L. F. Veiros,
C. Cordeiro, P. M. P. Gois, J. Am. Chem. Soc. 2012, 134,
10299−10305.
[34] R. A. Bauer, Drug Discov. Today 2015, 20, 1061−1073.
[35] J. M. Bradshaw, J. M. McFarland, V. O. Paavilainen, A.
Bisconte, D. Tam, V. T. Phan, S. Romanov, D. Finkle, J. Shu,
V. Patel, T. Ton, X. Li, D. G. Loughhead, P. A. Nunn, D. E. Karr,
M. E. Gerritsen, J. O. Funk, T. D. Owens, E. Verner, K. A.
Brameld, R. J. Hill, D. M. Goldstein, J. Taunton, Nat. Chem. Biol.
2015, 11, 525−531.
[3]
[4]
[5]
[36] M. Goličnik, J. Stojan, Biochem. Mol. Biol. Educ. 2004, 32,
228−235.
[6]
[37] L. A. Admed, H. Younus, Drug Metab. Rev. 2019, 51, 42−64.
[38] B. R. Lanning, L. R. Whitby, M. M. Dix, J. Douhan, A. M. Gilbert,
E. C. Hett, T. O. Johnson, C. Joslyn, J. C. Kath, S. Niessen, L.
R. Roberts, M. E. Schnute, C. Wang, J. J. Hulce, B. Wei, L. O.
Whiteley, M. M. Hayward, B. F. Cravatt, Nat. Chem. Biol. 2014,
10, 760−767.
[7] D. S. Johnson, E. Weerapana, B. F. Cravatt, Future Med. Chem.
2010, 2, 949−964.
[8]
A. Chaikuad, P. Koch, S. A. Laufer, S. Knapp, Angew. Chem.
Int. Ed. 2018, 57, 4372−4385.
Z. Zhao, P. E. Bourne, Drug Discov. Today 2018, 23, 727−735.
[9]
[10] J. Engel, J. Lategahn, D. Rauh, ACS Med. Chem. Lett. 2016, 7,
2−5.
[39] H. Shi, C.-J. Zhang, G. Y. J. Chen, S. Q. Yao, J. Am. Chem.
Soc. 2012, 134, 3001−3014.
[11] S-H. I. Ou, Crit. Rev. Oncol. Hematol. 2012, 83, 407−421.
[12] Q. S. Liu, Y. Sabnis, Z. Zhao, T. H. Zhang, S. J. Buhrlage, L. H.
Jones, N. S. Gray, Chem. Biol. 2013, 20, 146−159.
[13] S. Niessen, M. M. Dix, S. Barbas, Z. E. Potter, S. Lu, O. Brodsky,
S. Planken, D. Behenna, C. Almaden, K. S. Gajiwala, K. Ryan,
[40] K. M. Backus, B. E. Correia, K. M. Lum, S. Forli, B. D. Horning,
G. E. González-Páez, S. Chatterjee, B. R. Lanning, J. R. Teijaro,
A. J. Oison, D. W. Wolan, B. F. Cravatt, Nature 2016, 534,
570−574.
7
This article is protected by copyright. All rights reserved.