S. Cunha, T. L .d. Silva / Tetrahedron Letters 50 (2009) 2090–2093
2093
S.; Nagayama, S.; Perlstein, E. O.; Schreiber, S. L. J. Am. Chem. Soc. 2004, 126,
16077–16086.
3. (a) Beraldo, H. Quim. Nova 2004, 27, 461–471; (b) Beraldo, H.; Gambino, D. Mini-
Rev. Med. Chem. 2004, 4, 31–39.
4. (a) Aly, A. A.; Hassan, A. A.; Ameen, M. A. Tetrahedron Lett. 2008, 49, 4060–4062;
(b) Aquino, T. M.; Liesen, A. P.; Silva, R. E. A.; Lima, V. T.; Carvalho, C. S.; Faria, A.
R.; Araújo, J. M.; Lima, J. G.; Alves, A. J.; Melo, E. J. T.; Góes, A. J. S. Bioorg. Med.
Chem. 2008, 16, 446–456.
5. For analysis of the problem of stop-and-go synthesis, see: Walji, A. M.;
MacMillan, D. W. C. Synlett 2007, 1477–1498.
6. (a) Leite, A. C. L.; Moreira, D. R. M.; Coelho, L. C. D.; Menezes, F. D.; Brondani, D. J.
Tetrahedron Lett. 2008, 49, 1538–1541; (b) Li, J.-P.; Zheng, P.-Z.; Zhu, J. G.; Liu, R.-
J.; Qu, G.-R. Chim. J. Chem. 2006, 24, 1–10; (c) Güzel, O.; Karali, N.; Salman, A.
Bioorg. Med. Chem. 2008, 16, 8976–8987.
7. Anslyn, E. V.; Dougertty, D. A. Modern Physical Organic Chemistry; University
Science Books: Salsalito, 2006. p. 279.
multicomponent reaction, the method was extended to benzoyl and
butyl isothiocyanate, but we could not isolate the desired thiosemi-
carbazones. However, the method was successfully applied to p-
chloro-phenyl isothiocyanate (Table 1, entries 15–20).
In conclusion, this study shows for the first time that three-
component coupling reaction involving aryl isothiocyanates,
hydrazine, and oxo compounds can be conveniently employed as
a direct, catalyst-free synthetic route to a broad spectrum of thio-
semicarbazones. Since the experimental conditions8 are extremely
simple, inexpensive, and very mild, we hope that this approach
would be useful in the context of synthesis of molecular library
for pharmacological applications. Besides, because thiosemicarba-
zone itself can participate in multicomponent reactions9 we are
investigating the application of the conditions here described in
more complex situations, and additional studies of our research
group will be described in due time.
8. General synthetic procedure: 2 mmol of hydrazine, 2 mmol isothiocyanate, and
2 mmol of aldehyde or ketone in 10 mL of MeOH were heated under reflux at the
indicated time in Table 1. After this time, the reaction was treated as indicated in
each case. For 4a–p the solid was decanted and triturated with cold methanol;
4s was recrystallized from acetonitrile; 4q,r,t were purified from silica-gel
column chromatography (hexane/ethyl acetate 7:3; dichloromethane; and
hexane/ethyl acetate 6:4, respectively). Spectral data for new compound: 4i
brown solid, mp 165.5–166.7 °C (recrystallized from ethanol). IR (KBr): 3306,
Acknowledgments
3135, 1547, 1513, 1261, 1206 cmÀ1 1H NMR (300 MHz, DMSO-d6): d 11.73 (s,
;
1H), 9.81 (s, 1H), 7.97 (s, 1H), 7.57 (dd, 2H, J 7.2 Hz, J 1.5 Hz), 7.44–7.16 (m, 6H),
6.83 (s, 1H), 2.20 (s, 3H) ppm; 13C NMR (DMSO-d6): d 176.0, 148.9, 139.4, 137.6,
136.7, 134.7, 129.7, 128.8, 128.4, 128.1, 125.8, 125.5, 13.2 ppm; 4j greenish
solid, mp 179.4–180.2 °C (recrystallized from ethanol), IR (KBr): 3305, 3132,
The authors gratefully acknowledge the financial support of
Conselho Nacional de Desenvolvimento Científico e Tecnológico—
CNPq and Fundação de Amparo à Pesquisa do Estado da Bahia—FA-
PESB. We also thank CNPq for fellowship to T.L.S., and a research
fellowship to S.C., and Professor Mauricio Victor for the comments.
1552, 1501, 1251, 1194 cmÀ1 1H NMR (300 MHz, DMSO-d6): d 11.69 (s, 1H),
;
10.07 (s, 1H), 8.06 (s, 1H), 7.82 (d, 1H, J 1.2 Hz), 7.55 (d, 2H, J 7.8 Hz), 7.40–7.31
(m, 4H), 7.22–7.02 (m, 2H), 6.94 (d, 1H, J 7.8 Hz), 6.11 (s, 1H), 6.07 (s, 1H) (E–Z
mixture 2:1) ppm; 13C NMR (DMSO-d6): d 175.7, 149.0, 148.0, 142.6, 139.0,
128.5, 128.1, 127.9, 126.0, 125.2, 124.2, 108.1, 105.5, 101.4 ppm; 4l brown solid,
mp 184.7–186.5 °C (recrystallized from ethanol), IR (KBr): 3326, 3144, 1550,
References
1507, 1273, 1204 cmÀ1 1H NMR(300 MHz, DMSO-d6): d 11.63 (s, 1H), 9.97 (s,
;
1. (a) Hudlicky´, T.; Reed, J. W. The Way of Synthesis; Wiley-VCH, 2007; (b)
Schreiber, S. L. Science 2000, 287, 1964–1969; (c) Domling, A. Chem. Rev 2006,
106, 17–89.
2. (a) Fisk, J. S.; Mosey, R. A.; Tepe, J. J. Chem. Soc. Rev. 2007, 36, 1432–1440; (b)
Spandl, R. J.; Bender, A.; Spring, D. R. Org. Biol. Chem. 2008, 6, 1149–1158; (c)
Spring, D. R. Org. Biol. Chem. 2003, 1, 3867–3870; (d) Lo, M. M.-C.; Neumann, C.
1H), 9.04 (s, 1H), 8.03 (s, 1H), 7.58 (d, 2H, J 7.8 Hz), 7.41 (d, 1H, J 2.1 Hz), 7.35 (t,
2H, J 7.5 Hz), 7.21–7.16 (m, 2H), 6.95 (d, 1H, J 8.4 Hz), 3.81 (s, 3H) ppm;. 13C NMR
(DMSO-d6): d 175.4, 149.7, 146.6, 143.3, 139.0, 127.9, 126.8, 125.4, 125.0, 120.6,
113.3, 111.6, 55.6 ppm.
9. Darehkordi, A.; Saidi, K.; Islami, M. R. Arkivok 2007, 1, 180–188.